English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 658-672 DOI: 10.7536/PC171220 前一篇   后一篇

• 综述 •

含有七元碳环的有机共轭分子在光电材料中的应用

史丹丹1,2, 张西沙1, 张德清1,2*   

  1. 1. 中国科学院化学研究所 北京分子科学国家实验室 有机固体重点实验室 分子科学科教卓越中心 北京 100190;
    2. 中国科学院大学化学学院 北京 100049
  • 收稿日期:2017-12-12 修回日期:2018-01-16 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 张德清e-mail:dqzhang@iccas.ac.cn E-mail:dqzhang@iccas.ac.cn
  • 基金资助:
    中国科学院B类先导专项(No.XDB12010300)和国家自然科学基金项目(No.21602225,21661132006)资助

Application of Organic Conjugated Frameworks Containing Seven-Membered Carbon Rings in Optoelectronic Materials

Dandan Shi1,2, Xisha Zhang1, Deqing Zhang1,2*   

  1. 1. Beijing National Laboratory for Molecular Sciences, Organic Solids Key Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-12-12 Revised:2018-01-16 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the Strategic Priority Research Program of the CAS (No.XDB12010300) and the National Natural Science Foundation of China (No. 21602225, 21661132006).
苯环是构成有机光电材料的主要单元,非苯系的七元环共轭体系则在有机光电材料中应用较少,直到最近几年才开始受到关注。由于七元环的前线轨道与六元环的明显差异和七元环容易被氧化而形成稳定的芳香性环庚三烯正离子的特点,它的引入可能给有机材料带来特殊的性能和应用。本文首先从历史的角度回顾了七元共轭碳环的发现、合成与结构研究。然后,对七元碳环共轭分子的结构骨架进行了分类,并对这些结构骨架的合成方法进行了总结。对七元碳环共轭分子在近红外吸收、有机场效应晶体管、有机太阳能电池、刺激-响应等领域的应用进行了重点介绍,并对该领域的发展前景进行了展望。
Benzene is one of the most widely used units in organic opto-electronic materials. Different from six-membered benzene, seven-membered carbon conjugated system has seen much less applications in opto-electronic materials. Until recently, some attention has been paid to this field. Because of its different molecular orbital characteristic from benzene and easiness to be oxidized, seven-membered carbon ring conjugated system may introduce special and interesting properties to organic opto-electronic materials. In this paper, the conjugated seven-membered carbon rings are reviewed from the point of discovery, synthesis and structural investigation. Then, the skeleton types containing seven-membered carbon rings are analyzed and the synthetic methods for these skeleton types are demonstrated. The applications of conjugated molecules containing seven-membered carbon rings in near infrared absorptive materials, organic field effect transistors, organic solar cells and stimuli-responsive systems are introduced. In the end, the future developments of this field are discussed.
Contents
1 Introduction
2 Conjugated frameworks containing 7-membered carbon ring
3 Representative synthetic methods for conjugated molecules containing 7-membered carbon ring
3.1 Cyclo-addition and electro-cyclization reactions
3.2 Friedel-Crafts reaction
3.3 Condensation reaction
3.4 Scholl-type oxidative coupling reaction
3.5 Metal mediated alkene or alkyne cyclization
3.6 Functionalization of 7-membered ring
4 Application of conjugated molecules containing 7-membered carbon ring in near infrared absorption systems
5 Application of conjugated molecules containing 7-membered carbon ring in organic field effect transistors
5.1 Azulene based systems
5.2 Non-azulene based systems
6 Application of conjugated molecules containing 7-membered carbon ring in organic solar cells
7 Application of conjugated molecules containing 7-membered carbon ring in stimuli-responsive systems
7.1 Azulene based systems
7.2 Non-azulene based systems
8 Conclusion and outlook

中图分类号: 

()
[1] Tovar J D. Chem. Rec., 2014, 14:214.
[2] Tobe Y. Chem. Rec., 2015, 15:86.
[3] Nozoe T. Bull. Chem. Soc. Jpn., 1936, 11:295.
[4] Nozoe T. Yakugaku (Science of Drugs), 1949, 3:174.
[5] Nozoe T, Seto S, Kitahara Y, Kunori M, Nakayama Y. Proc. Jpn. Acad., 1950, 26:38.
[6] Asao T, ItÔ S, Murata I. Eur. J. Org. Chem., 2004, 2004:899.
[7] Miao Q. Chem. Rec., 2015, 15:1156.
[8] Sherndal A E. J. Am. Chem. Soc., 1915, 37:167.
[9] Plattner P A, Alexander S P. Helv. Chim. Acta., 1937, 20:224.
[10] Cheung K Y, Miao Q. Polycyclic Arenes and Heteroarenes. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. 85.
[11] Treibs W, Klinkhammer H J. Chem. Ber., 1950, 83:367.
[12] Bergmann E D, Agranat I. J. Chem. Soc. C, 1971, 3532.
[13] Nenajdenko V G, Baraznenok I L, Balenkova E S. J. Org. Chem., 1998, 63:6132.
[14] Choi Y L, Yu C M, Kim B T, Heo J N. J. Org. Chem., 2009, 74:3948.
[15] Bergmann E D, Ikan R. J. Org. Chem., 1963, 28:3341.
[16] Agranat I, Avnir D. J. Chem. Soc. Perkin Trans. 1, 1974, 1155.
[17] Jones W M, Ennis C L. J. Am. Chem. Soc., 1967, 89:3069.
[18] Jones W M, Ennis C L. J. Am. Chem. Soc., 1969, 91:6391.
[19] Halton B, Buckland S J, Lu Q, Mei Q, Stang P J. J. Org. Chem., 1988, 53:2418.
[20] Agranat I, Cohen S, Isaksson R, Sandstroem J, Suissa M R. J. Org. Chem., 1990, 55:4943.
[21] Asao T, Morita N, Kato K. Heterocycles, 1978, 11:287.
[22] Komatsu K, Fujiura R, Okamoto K. J. Org. Chem., 1988, 53:3849.
[23] Ostrowski S, Makosza M. Liebigs Ann. Chem., 1989, 95.
[24] Minabe M, Tomiyama T, Nozawa T, Noguchi M, Nakao A, Oba T, Kimura T. Bull. Chem. Soc. Jpn., 2001, 74:1093.
[25] Bergmann E D. Chem. Rev., 1968, 68:41.
[26] Wang Z X, Xing Y J, Shao H X, Lu P, Weber W P. Org. Lett., 2005, 7:87.
[27] Zheng G R, Wang Z X, Tang L, Lu P, Weber W P. Sens. Actuators B, 2007, 122:389.
[28] Boekelheide V, Langeland W E, Liu C T. J. Am. Chem. Soc., 1951, 73:2432.
[29] Boekelheide V, Vick G K. J. Am. Chem. Soc., 1956, 78:653.
[30] Cava M P, Schlessinger R H. J. Am. Chem. Soc., 1963, 85:835.
[31] Vogel E, Neumann B, Klug W, Schmickler H, Lex J. Angew. Chem. Int. Ed., 1985, 24:1046.
[32] Murata I, Nakasuji K, Yamamoto K, Nakazawa T, Kayane Y, Kimura A, Hara O. Angew. Chem. Int. Ed., 1975, 14:170.
[33] Jutz C, Kirchlechner R. Angew. Chem. Int. Ed., 1966, 5:516.
[34] Nakasuji K, Todo E, Murata I. Angew. Chem. Int. Ed., 1977, 16:784.
[35] Bestmann H J, Ruppert D. Angew. Chem. Int. Ed., 1968, 7:637.
[36] Eishiro T, Kagetoshi Y, Ichiro M. Chem. Lett., 1979, 8:537.
[37] Yamaguchi Y, Ogawa K, Nakayama K I, Ohba Y, Katagiri H. J. Am. Chem. Soc., 2013, 135:19095.
[38] Yao J J, Cai Z X, Liu Z T, Yu C M, Luo H W, Yang Y, Yang S F, Zhang G X, Zhang D Q. Macromolecules, 2015, 48:2039.
[39] Sugihara Y, Saito J, Murata I. Angew. Chem. Int. Ed., 1991, 30:1174.
[40] Yang X J, Liu D Q, Miao Q. Angew. Chem. Int. Ed., 2014, 53:6786.
[41] Yang X J, Shi X L, Aratani N, Goncalves T P, Huang K W, Yamada H, Chi C Y, Miao Q. Chem. Sci., 2016, 7:6176.
[42] Doering W V E, Knox L H. J. Am. Chem. Soc., 1954, 76:3203.
[43] Asai K, Fukazawa A, Yamaguchi S. Chem. Eur. J., 2016, 22:17571.
[44] Weis J G, Swager T M. ACS Macro. Lett., 2015, 4:138.
[45] Malandra J L, Mills N S, Kadlecek D E, Lowery J A. J. Am. Chem. Soc., 1994, 116:11622.
[46] Dahl B J, Mills N S. J. Am. Chem. Soc., 2008, 130:10179.
[47] Piekarski A M, Mills N S, Yousef A. J. Am. Chem. Soc., 2008, 130:14883.
[48] Oshima H, Fukazawa A, Sasamori T, Yamaguchi S. Angew. Chem. Int. Ed., 2015, 54:7636.
[49] Kolc J, Michl J. J. Am. Chem. Soc., 1973, 95:7391.
[50] Asai K, Fukazawa A, Yamaguchi S. Angew. Chem. Int. Ed., 2017, 56:6848.
[51] Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N. J. Am. Chem. Soc., 1983, 105:7171.
[52] Yamamoto K, Saitho Y, Iwaki D, Ooka T. Angew. Chem. Int. Ed., 1991, 30:1173.
[53] Kawasumi K, Zhang Q Y, Segawa Y, Scott L T, Itami K. Nat. Chem., 2013, 5:739.
[54] Cheung K Y, Xu X M, Miao Q. J. Am. Chem. Soc., 2015, 137:3910.
[55] Gu X, Li H Y, Shan B W, Liu Z F, Miao Q. Org. Lett., 2017, 19:2246.
[56] Fujikawa T, Segawa Y, Itami K. J. Org. Chem., 2017, 82:7745.
[57] Fukui N, Kim T, Kim D, Osuka A. J. Am. Chem. Soc., 2017, 139:9075.
[58] Luo J Y, Xu X M, Mao R X, Miao Q. J. Am. Chem. Soc., 2012, 134:13796.
[59] Ip H W, Ng C F, Chow H F, Kuck D. J. Am. Chem. Soc., 2016, 138:13778.
[60] Wong W S, Ng C F, Kuck D, Chow H F. Angew. Chem. Int. Ed., 2017, 56:12356.
[61] Copland D, Leaver D, Menzies W B. Tetrahedron Lett., 1977, 18:639.
[62] Mughal E U, Kuck D. Chem. Commun., 2012, 48:8880.
[63] Fu W C, Wang Z, Chan W T K, Lin Z Y, Kwong F Y. Angew. Chem. Int. Ed., 2017, 56:7166.
[64] Márquez I R, Fuentes N, Cruz C M, Puente-Muñoz V, Sotorrios L, Marcos M L, Choquesillo-Lazarte D, Biel B, Crovetto L, Gómez-Bengoa E, González M T, Martin R. Cuerva J M, Campaña A G. Chem. Sci., 2017, 8:1068.
[65] Pillekamp M, Alachraf W, Oppel I M, Dyker G. J. Org. Chem., 2009, 74:8355.
[66] Dong J X, Zhang H L. Chin. Chem. Lett., 2016, 27:1097.
[67] Xin H S, Gao X K. ChemPlusChem, 2017, 82:945.
[68] Shevyakov S V, Li H, Muthyala R, Asato A E, Croney J C, Jameson D M, Liu R S H. J. Phys. Chem. A, 2003, 107:3295.
[69] Qi D D, Zhang L J, Zhang Y X, Bian Y Z, Jiang J Z. J. Phys. Chem. A, 2010, 114:13411.
[70] Nöll G, Amthor S, Avola M, Lambert C, Daub J. J. Phys. Chem. C, 2007, 111:3512.
[71] Murai M, Ku S Y, Treat N D, Robb M J, Chabinyc M L, Hawker C J. Chem. Sci., 2014, 5:3753.
[72] Wang F, Lin T T, He C, Chi H, Tang T, Lai Y H. J. Mater. Chem., 2012, 22:10448.
[73] Yamaguchi Y, Takubo M, Ogawa K, Nakayama K I, Koganezawa T, Katagiri H. J. Am. Chem. Soc., 2016, 138:11335.
[74] Xin H S, Ge C W, Yang X D, Gao H L, Yang X C, Gao X K. Chem. Sci., 2016, 7:6701.
[75] 辛涵申(Xin H S),葛从伍(Ge C W), 傅丽娜(Fu L N), 杨笑迪(Yang X D), 高希珂(Gao X K).有机化学(Chinese Journal of Organic Chemistry), 2017, 37:711.
[76] Xin H S, Ge C W, Jiao X, Yang X D, Rundel K, McNeill C R, Gao X K. Angew. Chem. Int. Ed., DOI:10.1002/anie.201711802.
[77] Xia H, Liu D Q, Song K S, Miao Q. Chem. Sci., 2011, 2:2402.
[78] Mackay A L, Terrones H. Nature, 1991, 352:762.
[79] Lenosky T, Gonze X, Teter M, Elser V. Nature, 1992, 355:333.
[80] lijima S, Ichihashi T, Ando Y. Nature, 1992, 356:776.
[81] Beuerle F, Herrmann C, Whalley A C, Valente C, Gamburd A, Ratner M A, Stoddart J F. Chem. Eur. J., 2011, 17:3868.
[82] Wang X Q, Yu S P, Lou Z Y, Zeng Q, Yang M L. Phys. Chem. Chem. Phys., 2015, 17:17864.
[83] Segawa Y, Ito H, Itami K. Nat. Rev. Mater., 2016, 1:15002.
[84] Zhang X H, Li C, Wang W B, Cheng X X, Wang X S, Zhang B W. J. Mater. Chem., 2007, 17:642.
[85] Chen Y, Zhu Y Q, Yang D B, Zhao S L, Zhang L, Yang L, Wu J L, Huang Y, Xu Z, Lu Z Y. Chem. Eur. J., 2016, 22:14527.
[86] Umeyama T, Watanabe Y, Miyata T, Imahori H. Chem. Lett., 2015, 44:47.
[87] Nishimura H, Ishida N, Shimazaki A, Wakamiya A, Saeki A, Scott L T, Murata Y. J. Am. Chem. Soc., 2015, 137:15656.
[88] Puodziukynaite E, Wang H W, Lawrence J, Wise A J, Russell T P, Barnes M D, Emrick T. J. Am. Chem. Soc., 2014, 136:11043.
[89] Grellmann K H, Heilbronner E, Seiler P, Weller A. J. Am. Chem. Soc., 1968, 90:4238.
[90] Amir E, Amir R J, Campos L M, Hawker C J. J. Am. Chem. Soc., 2011, 133:10046.
[91] Koch M, Blacque O, Venkatesan K. J. Mater. Chem. C, 2013, 1:7400.
[92] Wang F, Lai Y H, Han M Y. Macromolecules, 2004, 37:3222.
[93] Wang X, Ng J K P, Jia P, Lin T, Cho C M, Xu J, Lu X, He C. Macromolecules, 2009, 42:5534.
[94] Murai M, Amir E, Amir R J, Hawker C J. Chem. Sci., 2012, 3:2721.
[95] Zhou Y Y, Zhuang Y P, Li X, Agren H, Yu L, Ding J D, Zhu L L. Chem. Eur. J., 2017, 23:7642.
[96] Luo J Y, Song K S, Gu F L, Miao Q. Chem. Sci., 2011, 2:2029.
[97] Chen W C, Lee Y W, Chen C T. Org. Lett., 2010, 12:1472.
[98] Letizia J A, Salata M R, Tribout C M, Facchetti A, Ratner M A, Marks T J. J. Am. Chem. Soc., 2008, 130:9679.
[99] Guo X G, Ortiz R P, Zheng Y, Hu Y, Noh Y Y, Baeg K J, Facchetti A, Marks T J. J. Am. Chem. Soc., 2011, 133:1405.
[100] Guo X G, Zhou N J, Lou S J, Hennek J W, Ponce O R, Butler M R, Boudreault P L T, Strzalka J, Morin P O, Leclerc M, Lopez N J T, Ratner M A, Chen L X, Chang R P H, Facchetti A, Marks T J. J. Am. Chem. Soc., 2012, 134:18427.
[101] Zhou N, Guo X, Ortiz R P, Li S, Zhang S, Chang R P H, Facchetti A, Marks T J. Adv. Mater., 2012, 24:2242.
[102] Saito M, Osaka I, Suda Y, Yoshida H, Takimiya K. Adv. Mater., 2016, 28:6921.
[103] Wang Y, Guo H, Ling S, Arrechea-Marcos I, Wang Y, Lopez Navarrete J T, Ponce Ortiz R, Guo X. Angew. Chem. Int. Ed., 2017, 56:9924.
[104] Wang Y F, Yan Z L, Guo H, Uddin M A, Ling S H, Zhou X, Su H M, Dai J F, Woo H Y, Guo X G. Angew. Chem. Int. Ed., 2017, 56:15304.
[105] Melkonyan F S, Zhao W, Drees M, Eastham N D, Leonardi M J, Butler M R, Chen Z H, Yu X E, Chang R P H, Ratner M A, Facchetti A F, Marks T J. J. Am. Chem. Soc., 2016, 138:6944.
[106] He X M, Borau-Garcia J, Woo A Y Y, Trudel S, Baumgartner T. J. Am. Chem. Soc., 2013, 135:1137.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[5] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[6] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[7] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[8] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[11] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[12] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[13] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[14] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[15] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.