English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 765-774 DOI: 10.7536/PC171202 前一篇   后一篇

• 综述 •

锂浆料电池基础科学问题研究

刘丹丹1,2, 陈永翀1,2*, 何菡1,3, 何颖源1, 刘昊1, 张彬1,3   

  1. 1. 中国科学院电工研究所 储能技术研究组 北京 100190;
    2. 中国科学院大学 北京 100049;
    3. 北京好风光储能技术有限公司 北京 100085
  • 收稿日期:2017-12-01 修回日期:2017-12-30 出版日期:2018-06-15 发布日期:2018-03-07
  • 通讯作者: 陈永翀,e-mail:ycchen@mail.iee.ac.cn E-mail:ycchen@mail.iee.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.51607175)、北京市科技计划(No.Z161100000416001)和北京市自然科学基金-海淀原始创新联合基金项目(No.L172044)资助

Scientific Fundamentals of Lithium Slurry Battery

Dandan Liu1,2, Yongchong Chen1,2*, Han He1,3, Yingyuan He1, Hao Liu1, Bin Zhang1,3   

  1. 1. Energy Storage Technology Research Group, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Beijing Hawaga Power Storage Technology Ltd., Beijing 100085, China
  • Received:2017-12-01 Revised:2017-12-30 Online:2018-06-15 Published:2018-03-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51607175),the Beijing Municipal Science and Technology Project (No.Z161100000416001),and the Joint Funds of Beijing Natural Science Foundation and Haidian Original Innovation Project (No.L172044).
锂浆料电池是一种低成本、长寿命、高安全性和易回收的容量型电化学储能技术。与传统锂电池的固定粘接电极不同,锂浆料电池的储锂活性颗粒分布在浆料态的三维导电网络中,具有厚电极和可维护再生的特征。目前制约锂浆料电池应用的关键科学问题主要包括:解析不同浆料电极厚度和配比下电子-离子的混合导电机制,获得低内阻、高能量密度和功率密度的电极浆料;解析活性材料表面及浆料-集流体界面的电化学反应机制与微观结构演化规律,降低界面内阻,稳定界面特性,减少极化和容量损失;解析电池性能衰减及失效机制,优化电池在线维护与回收再生方法等。本文将从锂浆料电池的工作原理与特点、浆料电极的关键材料与混合导电机制、浆料-集流体界面与厚电极设计以及电极浆料的维护再生等方面对锂浆料电池基础关键科学问题的研究进展进行介绍。
Lithium slurry battery (LSB) is a capacity-type electrochemical energy storage technology with the attractive features of low cost, long life, high security and easy recycling. The lithium-storage particles of LSB are dispersed within the 3-dimensional conductive network of the slurry rather than being fixed and bonded in the electrode as prepared in traditional lithium battery. This endues LSB the characteristics of thick electrode and being maintainable to get regeneration. There are some key scientific barriers which limit the application of LSB, including the interpretation of mixed electronic-ionic conductivity mechanisms under different slurry thicknesses and formulations, in order to get an optimized electrode slurry with low internal resistance as well as high energy and power density; the analysis of the electrochemical reaction mechanisms and microstructure evolutions of the surface of active particle and the interface between the slurry and the current collector, in order to decrease the contact resistance, stabilize the interface structure and reduce the polarization and capacity loss; the research of capacity fading mechanism to optimize the online maintenance and recovery methods, etc. In this paper, the working principles and characteristics of LSB, and the research progress on the key materials and mixed conductivity mechanism of electrode slurry, the interface of slurry and current collector for the design of thick electrode, and the regeneration and recycling of electrode slurry are introduced.
Contents
1 Introduction
2 Working principles and characteristics of lithium slurry battery
3 Key materials and mixed electronic-ionic conductivity mechanisms of electrode slurry
3.1 Key materials of the electrode slurry
3.2 Mixed electronic-ionic conductivity mechanisms of electrode slurry
4 Slurry-current collector interface and design of thick electrode
4.1 Characteristics of slurry-current collector interface
4.2 Design of thick electrode
5 Online maintenance and recycling of electrode slurry
5.1 Online maintenance of electrode slurry
5.2 Recycling of electrode slurry
6 Conclusion

中图分类号: 

()
[1] 张彬(Zhang B), 陈永翀(Chen Y C), 张艳萍(Zhang Y P), 冯彩梅(Feng C M), 刘丹丹(Liu D D), 何颖源(He Y Y). 储能科学与技术(Energy Storage Science and Technology), 2017, 6(5):1000.
[2] 陈永翀(Chen Y C),武明晓(Wu M X), 任雅琨(Ren Y K), 康利斌(Kang L B), 李彦菊(Li Y J), 韩立(Han L), 林道勇(Lin D Y), 王秋平(Wang Q P).电工电能新技术(Advanced Technology of Electrical Engineering and Energy), 2012, 31(3):81.
[3] Hatzell K B, Boota M, Gogotsi Y. Chem. Soc. Rev., 2015, 44(23):8664.
[4] Park M, Ryu J, Wang W, Cho J. Nature Rev. Mater., 2016, 2:16080.
[5] 冯彩梅(Feng C M), 张晓虎(Zhang X H), 陈永翀(Chen Y C), 巩宇(Gong Y), 刘丹丹(Liu D D), 张萍(Zhang P). 科技通报(Bulletin of Science and Technology), 2017, 33:19.
[6] Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058):928.
[7] 李建林(Li J L), 田立亭(Tian L T), 来小康(Lai X K). 电力系统自动化(Automation of Electric Power Systems), 2015, 39(23):15.
[8] 陈永翀(Chen Y C), 李爱晶(Li A J), 刘丹丹(Liu D D), 张萍(Zhang P). 电器与能效管理技术(Electrical & Energy Management Technology), 2015, 24:39.
[9] Xing X K, Kalnoki-kis T, Moutsios W. US 748500, 1998.
[10] Xing X K. US 747143, 1998.
[11] Duduta M, Ho B, Wood V C, Limthongkul P, Brunini V E, Carter W C, Chiang Y M. Adv. Energy Mater., 2011, 334:928.
[12] 任雅琨(Ren Y K). 中国科学院电工研究所/北京航空航天大学学士论文(Bachelor Dissertation of Institute of Electrical Engineering, Chinese Academy of Sciences/Beihang University), 2011.
[13] 陈永翀(Chen Y C), 冯彩梅(Feng C M), 张艳萍(Zhang Y P), 张萍(Zhang P). CN 201510164222.1, 2015.
[14] Fan F Y, Woodford W H, Li Z, Baram N, Smith K C, Helal A, McKinley G H, Carter W C, Chiang Y M. Nano Lett., 2014, 14:2210.
[15] Brunini V E, Chiang Y M, Carter W C. Electrochimica Acta, 2012, 69:301.
[16] Li Z, Smith K C, Dong Y J, Baram N, Fan F, Xie J, Limthongkul P, Carter W C, Chiang Y M. Phys. Chem. Chem. Phys., 2013, 15(38):15833.
[17] Smith K C, Chiang Y M, Carter W C. J. Electrochem. Soc., 2014, 141(4):A486.
[18] Singh M, Kaiser J, Hahn H. J. Electroanal. Chem., 2016, 782:245.
[19] Danner T, Singh M, Hein S, Kaiser J, Hahn H, Latz A. J. Power Sources, 2016, 334:191.
[20] Huang Q Z, Li H, Grätzel M Z Q, Wang Q. Phys. Chem. Chem. Phys., 2013, 15:1793.
[21] 马璨(Ma C), 吕迎春(Lv Y C), 李泓(Li H). 储能科学与技术(Energy Storage Science and Technology), 2014, 3(1):53.
[22] 巩宇(Gong Y). 中国科学院大学硕士论文(Master Dissertation of University of Chinese Academy of Sciences), 2016.
[23] Cunha Á, Martins J, Rodrigues N, Brito F P. Int. J. Energy Res., 2015, 39(7):889.
[24] 冯彩梅. 中国科学院大学博士论文(Doctoral Dissertation of University of Chinese Academy of Sciences), 2017.
[25] Hamelet S, Tzedakis T, Leriche J B, Sailler S, Larcher D, Taberna P L, Simon P, Tarascon J M. J. Electrochem. Soc., 2012, 159(8):A1360.
[26] 任雅琨(Ren Y K). 中国科学院大学硕士论文(Master Dissertation of University of Chinese Academy of Sciences), 2014.
[27] Wei T S, Fan F Y, Helal A,Smith K C, McKinley G H, Chiang Y M, Lewis J A. Adv. Energy Mater., 2015, 5(15):1500535.
[28] 冯彩梅(Feng C M), 刘丹丹(Liu D D), 陈永翀(Chen Y C), 杜军军(Du J J), 张萍(Zhang P). 功能材料(Journal of Functional Materials), 2017, 48(5):5011.
[29] Feng C M, Chen Y C, Liu D D, Zhang P. IOP Conf. Ser.:Mater. Sci. Eng., 2017, 207:012076.
[30] Biendicho J J, Flox C, Sanz L, Morante J R. ChemSusChem, 2016, 9:1938.
[31] Madec L, Youssry M, Cerbelaud M, Soudan P, Guyomard D, Lestriez B. ChemPlusChem, 2015, 80:396.
[32] Youssry M, Madec L, Soudan P, Cerbelaud M, Guyomard D, Lestriez B. Phys. Chem. Chem. Phys., 2013, 15:14476.
[33] Madec L, Youssry M, Cerbelaud M, Soudan P, Guyomard D, Lestriez B. J. Electrochem. Soc., 2014, 161(5):A693.
[34] Ventosa E, Skoumal M, Vazquez F J, Flox C, Arbiol J, Morante J R. ChemSusChem, 2015, 8:1737.
[35] Youssry M, Madec L, Soudan P, Cerbelaud M, Guyomard D, Lestriez B. J. Power Sources, 2015, 274:424.
[36] Narayanan A, Wijnperlé D, Mugele F, Buchholz D, Vaalmab C, Doub X, Passerini S, Duits M H G. Electrochimica Acta, 2017, 251:388.
[37] Hamelet S, Larcher D, Dupont L, Tarascon J M. J. Electrochem. Soc., 2013, 160(3):A516.
[38] Chen H N, Zou Q L, Liang Z J, Liu H, Li Q, Lu Y C. Nature Commun., 2015, 6:5877.
[39] Chen X W, Hopkins B J, Helal A, Fan F Y, Smith K C, Li Z, Slocum A H, McKinley G H, Carter W C, Chiang Y M. Energy Environ. Sci., 2016, 9(5):1760.
[40] Chen H N, Lu Y C. Adv. Energy Mater., 2016, 6(8):1502183.
[41] Ryu I, Choi J W, Cui Y, Nix W D. J. Mechanics Phys. Solids, 2011, 59:1717.
[42] Petek T J, Hoyt N C, Savinell R F, Wainright J S. J. Electrochem. Soc., 2016, 163(1):A5001.
[43] Rwei S P, Ku F H, Cheng K C. Colloid Polym. Sci., 2002, 280:1110.
[44] Trappe V, Weitz D. Phys. Rev. Lett., 2000, 85:449.
[45] 任雅琨(Ren Y K), 陈永翀(Chen Y C), 冯彩梅(Feng C M), 方光荣(Fang G R), 韩立(Han L), 王秋平(Wang Q P). 现代科学仪器(Modern Scientific Instruments), 2014, 3:84.
[46] Doyle M, Fuller T F, Newman J. J. Electrochem. Soc., 1993, 140(6):1526.
[47] Fongy C, Gaillot A C, Jouanneau S, Guyomard D. J. Electrochem. Soc., 2010, 157(7):A885.
[48] Fongy C, Jouanneau S, Guyomard D, Lestriez B. J. Power Sources, 2011, 196:8494.
[49] Prosini P P. J. Electrochem. Soc., 2005, 152(10):A1925.
[50] Ventosa E, Zampardi G, Flox C, Mantia F L, Schuhmann W, Morante J R. Chem. Commun., 2015, 51:14973.
[51] 陈永翀(Chen Y C), 冯彩梅(Feng C M), 张艳萍(Zhang Y P), 张萍(Zhang P), 王秋平(Wang Q P). CN 201410027599.8, 2014.
[52] 陈永翀(Chen Y C), 张艳萍(Zhang Y P), 张萍(Zhang P). CN 201510520749.3, 2015.
[53] Ota N, Tan T. US 20160308218A1, 2016.
[54] 何颖源(He Y C), 陈永翀(Chen Y C), 张彬(Zhang B), 张欠之(Zhang Q Z), 张晓伟(Zhang X W), 张艳萍(Zhang Y P), 张萍(Zhang P). CN 201710053830.4, 2017.
[55] Kerlau M, Marcinek M, Kostecki R. Springer Berlin Heidelberg, 2008, 53(3):1385.
[56] Nagpure S C, Bhushan B, Babu S, Rizzoni G. Scripta Mater., 2009, 60:933.
[57] 宋文吉(Song W J), 陈永珍(Chen Y Z), 吕杰(Lv J), 林仕立(Lin S L), 陈明彪(Chen M B), 冯自平(Feng Z P). 新能源进展(Advances in New and Renewable Energy), 2016, 4(5):364.
[58] Zhou J G, Wang J, Hu Y F, Lu M. ACS Appl. Mater. Inter., 2017, 9:39336.
[59] 张晓虎(Zhang X H), 何颖源(He Y Y), 陈永翀(Chen Y C), 张彬(Zhang B), 张艳萍(Zhang Y P), 张萍(Zhang P). CN 201710058336.7, 2017.
[60] 张晓虎(Zhang X H), 陈永翀(Chen Y C), 张彬(Zhang B), 张艳萍(Zhang Y P), 张萍(Zhang P). CN 201710058490.4, 2017.
[61] 陈永翀(Chen Y C), 张晓虎(Zhang X H), 张彬(Zhang B), 何颖源(He Y Y), 谢晨(Xie C), 张艳萍(Zhang Y P), 张萍(Zhang P). CN 201710224927.7, 2017.
[62] Ordoñez J, Gago E J, Girard A. Renew. Sust. Energy Rev., 2016, 60:195.
[63] 郑莹(Zheng Y), 刘禹(Liu Y), 董超(Dong C), 吴慧敏(Wu H M), 刘建文(Liu J W). 电源技术(Chinese Journal of Powers Sources), 2014, 38(6):1172.
[64] 刘昊(Liu H), 何颖源(He Y Y), 陈永翀(Chen Y C), 张彬(Zhang B), 张艳萍(Zhang Y P), 张萍(Zhang P). CN 201611112362.5, 2016.
[65] Song D W, Wang X Q, Zhou E L, Hou P Y, Guo F X, Zhang L Q. J. Power Sources, 2013, 232(35):348.
[66] Zhang T, He Y H, Ge L H, Fu R S, Zhang X, Huang Y J. J. Power Sources, 2013, 240:766.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[3] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[4] 林娇, 刘春伟, 曹宏斌, 李丽, 陈人杰, 孙峙. 基于高温化学转化的废旧锂离子电池资源化技术[J]. 化学进展, 2018, 30(9): 1445-1454.
[5] 李红变*. 碳纳米多孔宏观体在水体净化中的应用[J]. 化学进展, 2016, 28(10): 1462-1473.
[6] 付晶, 王萌, 刘维喜, 陈涛* . 生物法制备2,3-丁二醇的最新进展[J]. 化学进展, 2012, 24(11): 2268-2276.
[7] 邢东明, 马列, 高长有. 取向结构和梯度分布医用材料的制备及应用[J]. 化学进展, 2011, 23(12): 2550-2559.
[8] 王玮, 李博, 高长有. 生物材料表面性能调控骨髓间充质干细胞分化[J]. 化学进展, 2011, 23(10): 2160-2168.
[9] 纪晓俊, 聂志奎, 黎志勇, 高振, 黄和. 生物制造2,3-丁二醇:回顾与展望[J]. 化学进展, 2010, 22(12): 2450-2461.
[10] 任天斌 曹春红 王刚 苏俭生 袁伟忠 任杰. 可吸收引导组织再生膜*[J]. 化学进展, 2010, 22(01): 179-185.
[11] 胡小红 朱旸 高长有. 用于软骨修复的水凝胶*[J]. 化学进展, 2009, 21(10): 2164-2175.
[12] 刘传富,张爱萍,李维英,孙润仓. 纤维素在新型绿色溶剂离子液体中的溶解及其应用*[J]. 化学进展, 2009, 21(09): 1800-1806.
[13] 田如锦. PEMFC金属双极板及其表面改性的研究进展[J]. 化学进展, 2009, 21(0708): 1687-1692.
[14] 张文强,于波,陈靖,徐景明. 高温固体氧化物电解制氢技术*[J]. 化学进展, 2008, 20(05): 778-788.
[15] 宋世栋,张华民,马霄平,张益宁,衣宝廉. 一体式可再生燃料电池[J]. 化学进展, 2006, 18(10): 1375-1380.
阅读次数
全文


摘要

锂浆料电池基础科学问题研究