English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 888-901 DOI: 10.7536/PC171127 前一篇   后一篇

• 综述 •

基于磷脂膜的界面相互作用研究

王雪, 陈中慧, 卿光焱*   

  1. 武汉理工大学 材料复合新技术国家重点实验室 武汉 430070
  • 收稿日期:2017-11-23 修回日期:2018-03-25 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 卿光焱 E-mail:qing@whut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21275114,51473131,21775116)资助

Interfacial Interaction on Phospholipid Membrane

Guangyan Qing, Zhonghui Chen, Guangyan Qing*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received:2017-11-23 Revised:2018-03-25 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21275114, 51473131, 21775116).
磷脂是一类非常重要的生物分子,它是细胞膜的主要组成部分,同时也在诸多生命活动(如细胞激活、代谢维持和激素分泌等)中发挥着不可替代的作用。磷脂种类繁多,且具有自组装能力强、生物相容性好、无细胞毒性、易于获得等一系列优点。作为一种最典型的界面材料,磷脂膜特殊的双层结构及出色的生物学性能引起了科研人员的广泛关注,其能够模拟生物膜结构,有助于研究界面上的分子特征及作用行为。此外,磷脂可被用作生物医学材料,改性磷脂以及磷脂与纳米颗粒的复合物在肿瘤成像技术、药物靶向递送系统等方面具有良好的发展前景,显著促进了新型生物材料的开发与进步。本文先归纳了磷脂的分类,并比较了磷脂在不同基底的吸附行为;之后重点分析了磷脂膜界面的选择性识别功能以及与多肽、酶、蛋白质等生物分子之间的相互作用;最后对基于磷脂膜的生物材料在生物传感、药物研究和成像技术中的应用作出了展望。
As a class of crucially important biomolecules, phospholipids are key building blocks of cytomembrane and play indispensable roles in a variety of life activities, such as cell activation, metabolism maintenance, hormone secretion, and so on. There are a variety of phospholipids, most of which display remarkable advantages in strong self-assembly ability, excellent biocompatibility, no cytotoxicity and easy availability. As the most typical interfacial materials, the unique bilayer structures and outstanding biological performances of phospholipid membranes have attracted researchers' interests, which provide an excellent platform to investigate molecular characteristics and interfacial interactions on cell membranes. In addition, phospholipids can be also used as biomedical materials. Various chemically modified phospholipids and phospholipid-nanoparticle composites display good prospects for development in biomedical fields of tumor imaging technology and drug targeting delivery, which greatly promotes the development of new-generation biomaterials. In this review, the classification of phospholipids has been summarized and their adsorption behaviors on different substrates are also discussed. Then special interests are placed on selective recognition capacities of the phospholipid bilayers and the interfacial interactions between phospholipid bilayers and various biomolecules, such as peptides, enzymes and proteins. Finally, the enticing prospects of phospholipid-based biomaterials in bio-sensing, drug research and bio-imaging technology are demonstrated.
Contents
1 Introduction
2 Classification of phospholipids
2.1 Natural phospholipids
2.2 Synthetic phospholipids
2.3 Phospholipid-based composites
3 Assembly behaviors of phospholipids on different surfaces
3.1 Mica surface
3.2 Silicon dioxide surface
3.3 Gold surface
3.4 Thiolated gold surface
4 Effect of phospholipid bilayers on biomolecules
4.1 Selective recognition at biointerface
4.2 Effect on self-assembly of peptide
4.3 Effect on enzyme catalysis
4.4 Effect on protein
5 Bio-applications of phospholipids
5.1 Bio-sensing
5.2 Drug targeted transport
5.3 Biological imaging technology
5.4 Drug release
6 Conclusion

中图分类号: 

()
[1] Nafday O A, Lowry T W, Lenhert S. Small, 2012, 8:1021.
[2] Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R. Nat. Nanotechnol., 2013, 8:594.
[3] Suetsugu S, Kurisu S, Takenawa T. Physiol. Rev., 2014, 94:1219.
[4] Mapstone M, Cheema A K, Fiandaca M S, Zhong X, Mhyre T R, MacArthur L H, Hall W J, Fisher S G, Peterson D R, Haley J M, Nazar M D, Rich S A, Berlau D J, Peltz C B, Tan M T, Kawas C H, Federoff H J. Nat. Med., 2014, 20:415.
[5] Hoogevest P V, Wendel A. Eur. J. Lipid Sci. Technol., 2014, 116:1088.
[6] Park S H, Das B B, Casagrande F, Tian Y, Nothnagel H J, Chu M, Kiefer H, Maier K, Angelis A D, Marassi F M, Opella S J. Nature, 2012, 491:779.
[7] Hagn F, Etzkorn M, Raschle T, Wagner G. J. Am. Chem. Soc., 2013, 135:1919.
[8] Cordeiro R M. Biochim. Biophys. Acta Biomembr., 2014, 1838:438.
[9] Shao S, Geng J, Yi H A, Gogia S, Neelamegham S, Jacobs A, Lovell J F. Nat. Chem., 2015, 7:438.
[10] Robison A D, Sun S, Poyton M F, Johnson F A, Pellois J P, Jungwirth P, Vazdar M, Cremer P S. J. Phys. Chem. B, 2016, 120:9287.
[11] Salzano G, Riehle R, Navarro G, Perche F, De R G, Tor-chilin V P. Cancer Lett., 2014, 343:224.
[12] Davies S S, Guo L. Chem. Phys. Lipids, 2014, 181:1.
[13] Noyhouzer T, L'Homme C, Beaulieu I, Mazurkiewicz S, Kuss S, Kraatz H B, Canesi S, Mauzeroll J. Langmuir, 2016, 32:4169.
[14] Yu F, Ao M, Zheng X, Li N, Xia J, Li Y, Li D, Hou Z, Qi Z, Chen X D. Drug Delivery, 2017, 24:825.
[15] Park J H, Cho H J, Yoon H Y, Yoon I S, Ko S H, Shim J S, Cho J H, Park J H, Kim K, Kwon I C, Kim D D. J. Control. Release, 2014, 174:98.
[16] Pattni B S, Chupin V V, Torchilin V P. Chem. Rev., 2015, 115:10938.
[17] Zhang Z, Sohgawa M, Yamashita K, Noda M. Electroanalysis, 2016, 28(3):620.
[18] Wang T, Feng Y, Jin X, Fan X, Crommen J, Jiang Z. J. Pharm. Biomed. Anal., 2014, 96:263.
[19] Liu Q, Boyd B J. Analyst, 2013, 138:391.
[20] Shen Y X, Saboe P O, Sines I T, Erbakan M, Kumar M. J. Membr. Sci., 2014, 454:359.
[21] Kuang H, Ku S H, Kokkoli E. Adv. Drug Delivery Rev., 2017, 110:80.
[22] Oberli M A, Reichmuth A M, Dorkin J R, Mitchell M J, Fenton O S, Jaklenec A, Anderson D G, Langer R, Blankschtein D. Nano Lett., 2017, 17:1326.
[23] Peng R, Wang H, Lyu Y, Xu L, Liu H, Kuai H, Liu Q, Tan W. J. Am. Chem. Soc., 2017, 139:12410.
[24] Shi K, Li J, Cao Z, Yang P, Qiu Y, Yang B, Wang Y, Long Y, Liu Y, Zhang Q, Qian J, Zhang Z, Gao H, He Q. J. Control. Release, 2015, 217:138.
[25] Qu W, Zuo W, Li N, Hou Y, Song Z, Gou G, Yang J. J. Drug Targeting, 2017, 25:661.
[26] Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. Asian J. Pharm. Sci., 2015, 10:81.
[27] Singh R P, Gangadharappa H V, Mruthunjaya K. J. Drug Delivery Sci. Technol., 2017, 39:166.
[28] 闫媛媛(Yan Y Y), 张康逸(Zhang K Y), 黄健花(Huang J H), 刘元法(Liu Y F), 王兴国(Wang X G). 中国油脂(China Oils and Fats), 2012, 37(5):61.
[29] Hama S, Ogino C, Kondo A. Appl. Microbiol. Biotechnol., 2015, 99:7879.
[30] Baldassarre F, Allegretti C, Tessaro D, Carata E, Citti C, Vergaro V, Nobile C, Cannazza G, Arrigo P D, Mele A, Dini L, Ciccarella G. ChemistrySelect, 2016, 1:6507.
[31] Cox E, Michalak A, Pagentine S, Seaton P, Pokorny A. Biochim. Biophys. Acta, Biomembr., 2014, 1838:2198.
[32] Slavetinsky C, Kuhu S, Peschel A. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2017, 1862:1310.
[33] Zhou C Y, Wu H, Devaraj N K. Chem. Sci., 2015, 6:4365.
[34] Liu J, Li J, Liu N, Guo N, Gao C, Hao Y, Chen Y, Zhang X. Int. J. Pharm., 2017, 530:291.
[35] Zhuang J, Young A P, Tsung C K. Small, 2017, 32:1700880.
[36] Du B, Tian L, Gu X, Li D, Wang E, Wang J. Small, 2015, 11:2333.
[37] Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Ao-shima S. Small, 2011, 7:1683.
[38] Liao Z, Wang H, Wang X, Zhao P, Wang S, Su W, Chang J. Adv. Funct. Mater., 2011, 21:1179.
[39] Zhang L, Chen Z, Li Y. Int. J. Nanomed., 2013, 8:3689.
[40] Wang F, Liu J. Small, 2014, 10:3927.
[41] Ross E E, Bondurant B, Spratt T, Conboy J C, O'Brien D F, Saavedra S S. Langmuir, 2001, 17:2305.
[42] Richter R P, Bérat R, Brisson A R. Langmuir, 2006, 22:3497.
[43] Watts T H, Brian A A, Kappler J W, Marrack P, Mcconnell H M. Proc. Natl. Acad. Sci. U. S. A., 1984, 81:7564.
[44] Richter R P, Brisson A R. Biophys. J., 2005, 88:3422.
[45] Reimhult E, Zäch M, Höök F, Kasemo B. Langmuir, 2006, 22:3313.
[46] Zhu X, Wang Z, Zhao A, Huang N, Chen H, Zhou S, Xie X. Colloids Surf. B, 2014, 116:459.
[47] Zawisza I, Lachenwitzer A, Zamlynny V, Horswell S L, Goddard J D, Lipkowski J. Biophys. J., 2003, 85:4055.
[48] Toma K, Kano H, Offenhäusser A. ACS Nano, 2014, 8:12612.
[49] Paw?owski J, Juhaniewicz J, Güzelo D?lu A, S?k S. Langmuir, 2015, 31:11012.
[50] Viitala L, Lajunen T, Urtti A O, Viitala T, Murtomäki L. J. Phys. Chem. C, 2015, 119:21395.
[51] Schönherr H, Johnson J M, Lenz P, Frank C W, Boxer S G. Langmuir, 2004, 20:11600.
[52] Hasan I Y, Mechler A. Biointerphases, 2016, 11:031017.
[53] Cajal Y, Svendsen A, De B J, Patkar S A, Alsina M A. Biochimie, 2000, 82:1053.
[54] Cozza G, Rossetto M, Bosello-Travain V, Maiorino M, Roveri A, Toppo S, Zaccarin M, Zennaro L, Ursini F. Free Radical Biol. Med., 2017, 112:1.
[55] Willems N, Lelimousin M, Koldsø H, Sansom M S. Bio-chim. Biophys. Acta, 2017, 1859:340.
[56] Alvares D S, Wilke N, Neto J R, Fanani M L. Chem. Phys. Lipids, 2017, 207:38.
[57] Das D, Pal S K. Chemistryselect, 2017, 2:4779.
[58] Daudey G A, Zope H R, Voskuhl J, Kros A, Boyle A L. Langmuir, 2017, 33:12443.
[59] Schulz M, Werner S, Bacia K, Binder W H. Angew. Chem. Int. Ed., 2013, 52:1829.
[60] Biros S M, Ullrich E C, Hof F, Laurent T A, Julius R J. J. Am. Chem. Soc., 2004, 126:2870.
[61] Ishigami T, Suga K, Umakoshi H. ACS Appl. Mater. Interfaces, 2015, 7:21065.
[62] Hirose M, Ishigami T, Suga K, Umakoshi H. Langmuir, 2015, 31:12968.
[63] Okamoto Y, Kishi Y, Suga K, Umakoshi H. Biomacromolecules, 2017, 18:1180.
[64] Okamoto Y, Kishi Y, Ishigami T, Suga K, Umakoshi H. J. Phys. Chem. B, 2016, 120:2790.
[65] 陆时万(Lu S W), 徐祥生(Xu X S), 沈敏健(Shen M J). 植物学(Botany). 北京:高等教育出版社(Beijing:Higher Education Press), 1991. 8.
[66] 王建勋(Wang J X), 秦四勇(Qin S Y), 蔡腾腾(Cai T T). 高等学校化学学报(Chemical Journal of Chinese Universities), 2015, 36(2):201.
[67] Kornmueller K, Lehofer B, Meindl C, Fröhlich E, Leitinger G, Amenitsch H, Prassl R. Biomacromolecules, 2016, 17:3591.
[68] Gao G, Zhang M, Lu P, Guo G, Wang D, Sun T. Angew. Chem., 2015, 127:2273.
[69] Sevigny J, Chiao P, Bussière T, Weinreb P H, Williams L, Maaier M, Dunstan R, Salloway S, Chen T, Ling Y, O'Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan M S, Quinrero-Monzon O, Scannevin R H, Arnold H M, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch R M, Sandrock A. Nature, 2016, 537:50.
[70] 叶明舟(Ye M Z). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2015.
[71] Qing G, Zhao S, Xiong Y, Lv Z, Jiang F, Liu Y, Chen H, Zhang M, Sun T. J. Am. Chem. Soc., 2014, 136:10736.
[72] Gao G, Zhang M, Lu P, Guo G, Wang D, Sun T. Angew. Chem., 2015, 54:2245.
[73] 王悦(Wang Y), 彭蜀晋(Peng S J), 周媛(Zhou Y). 大学化学(University Chemistry), 2011, 26(5):88.
[74] 王镜岩(Wang J Y), 朱圣康(Zhu S K), 徐长法(Xu C F). 生物化学(Biochemistry). 北京:高等教育出版社(Beijing:Higher Education Press), 2002. 319.
[75] Agapakis C M, Boyle P M, Silver P A. Nat. Chem. Biol., 2012, 8:527.
[76] Tabaei S R, Rabe M, Zetterberg H, Zhdanov V P, Höök F. J. Am. Chem. Soc., 2013, 135:14151.
[77] Carvalho C M L, Cabral J M S. Biochimie, 2000, 82:1063.
[78] Anzenbacher P, Anzenbacherová E. Cell. Mol. Life Sci., 2001, 58:737.
[79] Navrátilová V, Paloncyova M, Berka K, Otyepka M. J. Phys. Chem. B, 2016, 120:11205.
[80] 李红春(Li H C). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2015.
[81] Wang L, Gotoh T, Wang Y, Kouyama T, Wang J Y. J. Phys. Chem. C, 2017, 121:19999.
[82] Perez L, Mettry M, Hinman S S, Byers S R, McKeating K S, Caulkins B G, Cheng Q, Hooley R J. Soft Matter, 2017, 13:3966.
[83] Shen Y R. Nature, 1989, 337:519.
[84] Yan E C Y, Fu L, Wang Z, Liu W. Chem. Rev., 2014, 114:8471.
[85] Wu H L, Tong Y, Peng Q, Li N, Ye S. Phys. Chem. Chem. Phys., 2016, 18:1411.
[86] Wei F, Ye S, Li H, Luo Y. J. Phys. Chem. C, 2013, 117:11095.
[87] 胡艳军(Hu Y J), 蒋风雷(Jiang F L), 欧阳宇(Ouyang Y),刘义(Liu Y). 中国科学:化学(Scientic Sinica:Chimica), 2010, (9):90.
[88] Graça J S, de Oliveira R F, de Moraes M L, Ferreira M. Bioelectrochemistry, 2014, 96:37.
[89] Lin B, Liu D, Yan J, Qiao Z, Zhong Y, Yan J, Zhu Z, Ji T, Yang C J. ACS Appl. Mater. Interfaces, 2016, 8:6890.
[90] Weingart O G, Loessner M J. Toxicol. Appl. Pharmacol., 2016, 313:16.
[91] Kang D H, Jung H S, Kim K, Kim J. ACS Appl. Mater. Interfaces, 2017, 9:42210.
[92] Kraft J C, Freeling J P, Wang Z, Ho R J. J. Pharm. Sci., 2014, 103:29.
[93] Yan L, Crayton S H, Thawani J P, Amirshaghaghi A, Tsourkas A, Cheng Z. Small, 2015, 11:4870.
[94] Davis B M, Normando E M, Guo L, Turner L A, Nizari S, O'Shea P, Moss S E, Somavarapu S, Cordeiro M F. Small, 2014, 10:1575.
[95] Xu H L, Yang J J, Zhuge D L, Lin M T, Zhu Q Y, Jin B H, Tong M Q, Shen B X, Xiao J, Zhao Y Z. Adv. Healthcare Mater., DOI:10.1002/adhm.201701130.
[96] Tansi F L, Rüger R, Rabenhold M, Steiniger F, Fahr A, Kaiser W A, Hilger L. Small, 2013, 9:3659.
[97] Kim J, Pandya D N, Lee W, Park J W, Kim Y J, Kwak W, Ha Y S, Chang Y, An G I, Yoo J. ACS Med.Chem.Lett., 2014, 5:390.
[98] Gao X, Li C. Small, 2014, 10:426.
[99] Voon S H, Kiew L V, Lee H B, Lim S H, Noordin M I, Kamkaew A, Burgess K, Chung L Y. Small, 2014, 10:4993.
[100] Wang C, Ye Y, Hu Q, Bellotti A, Gu Z. Adv. Mater., 2017, 29.
[101] Sun Q, You Q, Wang J, Liu L, Wang Y, Song Y, Cheng Y, Wang S, Tan F, Li N. ACS Appl. Mater. Interfaces, 2018, 10:1963.
[102] Mazur F, Bally M, Städler B, Chandrawati R. Adv. Colloid Interface Sci., 2017, 249:88.
[103] Liu Q, Boyd B J. Analyst, 2013, 138:391.
[104] Mahmoudi-Badiki T, Alipour E, Hamishehkar H, Golabi S M. J. Biomater. Appl., 2016, 31:273.
[105] Zhu Y, Liao L. J. Nanosci. Nanotechnol., 2015, 15:4753.
[106] Bygd H C, Ma L, Bratlie K M. Mater. Sci. Eng. C, 2017, 79:237.
[107] Goldenbogen B, Brodersen N, Gramatica A, Loew M, Liebscher J, Herrmann A, Egger H, Budde B, Arbuzova A. Langmuir, 2011, 27:10820.
[108] Agrawal M, Ajazuddin, Tripathi D K, Saraf S, Saraf S, Antimisiaris S G, Mourtas S, Hammarlund-Udenaes M, Alexander A. J. Control. Release, 2017, 260:61.
[109] Shaw T K, Mandal D, Dey G, Pal M M, Paul P, Chakraborty S, Ali K A, Mukherjee B, Bandyopadhyay A K, Mandal M. Drug Delivery, 2017, 24:346.
[110] Zhang Y, Zhai M, Chen Z, Han X, Yu F, Li Z, Xie X, Han C, Yu L, Yang Y, Mei X. Drug Delivery, 2017, 24:1045.
[111] 于杰(Yu J), 叶超(Ye C), 李臣贵(Li C G), 陈蓉(Chen R), 胡育筑(Hu Y Z). 中国药科大学学报(Journal of China Pharmaceutical University), 2011, 42(4):380.
[112] Wang Y, Wu B, Yang C, Liu M, Sum T C, Yong K T. Small, 2016, 12:534.
[113] Luo D, Li N, Carter K A, Lin C, Geng J, Shao S, Huang W C, Qin Y, Atilla-Gokcumen G E, Lovell J F. Small, 2016, 12:3039.
[114] Luo D, Carter K A, Miranda D, Lovell J F. Adv. Sci., 2017, 4:1600106.
[115] Shao S, Do T N, Razi A, Chitgupi U, Geng J, Alsop R J, Dzikovski B G, Rheinstädter M C, Ortega J, Karttunen M, Spernyak J A, Lovell J F. Small, 2017, 13:1602505.
[116] Bégu S, Aubert-Pou Dëssel A, Polexe R, Leitmanova E, Lerner D A, Devoisselle J M, Tichit D. Chem. Mater., 2009, 21:2679.
[117] Wang Q, O'Hare D. Chem. Rev., 2012, 112:4124.
[118] Yan M, Zhang Z, Cui S, Zhang X, Chu W, Lei M, Zeng K, Liao Y, Deng Y, Zhao C. Asian J. Pharm. Sci., 2016, 11:396.
[119] Lee C H, Kankala R K, Kuthati Y, Liu C L. RSC Adv., 2015, 5:42666.
[120] Zhang Y, Wu X, Mi Y, Li H, Hou W. J. Phys. Chem. Solids, 2017, 108:125.
[121] Nogueira E, Gomes A C, Preto A, Cavaco-Paulo A. Colloids Surf. B, 2015, 136:514.
[122] Sugimoto T, Yamazaki N, Hayashi T, Yuba E, Harada A, Kotaka A, Shinde C, Kumei T, Sumida Y, Fukushima M, Munekata Y, Maruyama K, Kono K. Colloids Surf. B, 2017, 155:449.
[123] Luo D, Carter K A, Razi A, Geng J, Shao S, Giraldo D, Sunar U, Ortega J, Lovell J F. Biomaterials, 2015, 75:193.
[124] Østrem R G, Parhamifar L, Pourhassan H, Clergeaud G, Nielsen O L, Kjær A,Hansen A E, Andresen T L. J. Control. Release, 2017, 262:212.
[125] Nasir M Z M, Jackman J A, Cho N J, Ambrosi A, Pumera M. Anal. Chem., 2017, 89:11753.
[126] Liu X, Wu Z, Zhou F, Li D, Chen H. Colloids Surf. B, 2010, 79:452.
[127] Tang Z, Liu X, Luan Y, Liu W, Wu Z, Li D, Chen H. Polym. Chem., 2013, 4:5597.
[128] Liu J, Cai J, Chen H, Zhang S, Kong J. J. Electroanal. Chem., 2016, 781:103.
[129] Chen Z H, Lv Z Y, Wang X, Yang H, Guang Y Q, Sun T L. NPG Asia Mater. DOI:10.1038/am.2017.241.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[4] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[7] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[8] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[9] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[10] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[11] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[12] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[13] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[14] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[15] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
阅读次数
全文


摘要

基于磷脂膜的界面相互作用研究