English
新闻公告
More
化学进展 2018, Vol. 30 Issue (5): 491-504 DOI: 10.7536/PC171121 前一篇   后一篇

• 综述 •

催化不对称傅-克反应研究进展

张宇, 刘小华, 林丽丽, 冯小明*   

  1. 四川大学化学学院 成都 610064
  • 收稿日期:2017-11-23 修回日期:2018-01-14 出版日期:2018-05-15 发布日期:2018-04-25
  • 通讯作者: 冯小明e-mail:xmfeng@scu.edu.cn E-mail:xmfeng@scu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21432006)资助

Recent Advance in Catalytic Asymmetric Friedel-Crafts Reactions

Yu Zhang, Xiaohua Liu, Lili Lin, Xiaoming Feng*   

  1. College of Chemistry, Sichuan University, Chengdu 610064, China
  • Received:2017-11-23 Revised:2018-01-14 Online:2018-05-15 Published:2018-04-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21432006).
催化不对称傅-克反应是构建具有光学活性芳基化合物最有效的方法之一。自从1877年报道了首例傅-克反应后,该反应得到化学家们的关注。最近二十年,许多手性双功能有机小分子催化剂(如金鸡纳碱、手性脯氨醇硅醚、手性磷酸、手性硫脲等)以及金属与手性配体(如手性双氮氧、手性双唑啉、手性席夫碱)形成的配合物催化剂被应用到各类不对称傅-克反应中。本文主要从反应的芳基底物类型分类,对近年来酚、吡咯、呋喃以及噻吩参与的不对称傅-克反应进行简要概述,同时对这类反应所存在的问题和局限性进行总结,并对今后发展方向作了展望。
Catalytic asymmetric Friedel-Crafts reaction is one of the most efficient methods for the construction of optically active aryl-or heteroaryl-containing compounds. Since Friedel and Crafts reported the first example in 1877, this reaction has attracted wide attention. In recent twenty years, asymmetric catalytic Friedel-Crafts reaction has been well studied in the presence of a number of chiral bifunctional organocatalysts (such as derivatives of cinchona alkaloids, chiral prolinol ethers, chiral phosphoric acids, chiral thiourea, etc.) and various metal and chiral ligand (chiral N,N'-dioxide, chiral bis(oxazoline), chiral Schiff base) complexes. In this paper, we summarize the recent progress in asymmetric Friedel-Crafts reactions of phenols, pyrroles, furans and thiophenes. Finally, the deficiencies as well as the perspective of the Friedel-Crafts reaction have been highlighted.
Contents
1 Introduction
2 Catalytic asymmetric Friedel-Crafts reactions of phenols
2.1 Imines as the electrophiles
2.2 1, 2-Diketones as the electrophiles
2.3 Nitroalkenes as the electrophiles
2.4 α, β-Unsaturated carbonyl compounds as the electrophiles
2.5 Others double bonds as the electrophiles
3 Catalytic asymmetric Friedel-Crafts reactions of pyrroles
3.1 Nitroalkenes as the electrophiles
3.2 α, β-Unsaturated carbonyl compounds as the electrophiles
3.3 Others
4 Catalytic asymmetric Friedel-Crafts reactions of furans and thiophenes
5 Conclusion

中图分类号: 

()
[1] Olah G A, Krishnamurti R, Prakash G K S. In Comprehensive Organic Synthesis, Vol. 3, Eds. Trost B M, Fleming I. Pergamon, Oxford, 1991, 293.
[2] Bandini M, Melloni A, Tommasi S, Umani-Ronchi A. Synlett., 2005, 1199.
[3] Chen J R, Xiao W J, You S L., Catalytic Asymmetric Friedel-Crafts Alkylations, in Addition to Carbonyl Compounds-Imnes, Bandini M, Umani R A, Wiley-VCH, 2009, 101.
[4] 王以(Wang Y), 丁奎岭(Ding K L), 有机化学(Chinese Journal of Organic Chemistry), 2001, 21(10):763.
[5] Yuan Y, Wang X W, Li X, Ding K L. J. Org. Chem., 2004, 69:146.
[6] 盛益飞(Sheng Y F), 张安将(Zhang A J),郑晓建(Zheng X J), 游书力(You S L). 有机化学(Chinese Journal of Organic Chemistry), 2008, 28(4):605.
[7] Poulsen T B, Jørgensen K A. Chem. Rev., 2008, 108:2903.
[8] You S L, Cai Q, Zeng M. Chem. Soc. Rev., 2009, 38:2190.
[9] 冯翠兰(Feng C L), 徐海云(Xu H Y), 耿凤华(Geng F H), 广州化工(Guangzhou Chemical Industry), 2009, 39(11):16.
[10] Terrasson V, de Figueiredo R M, Campagne J M. Eur. J. Org. Chem., 2010, 41(32):2635.
[11] Zeng M, You S L. Synlett., 2010, 1289.
[12] 何展荣(He Z R), 黄毅勇(Huang Y Y), Francis V. 化学学报(Acta Chimica Sinica), 2013, 71:700.
[13] Beletskaya I P, Averin A D. Current Organocatalysis, 2016, 3:60.
[14] Liu G X, Zhang S L, Li H, Zhang T Z, Wang W. Org. Lett., 2011, 13:828.
[15] Chauhan P, Chimni S S. Eur. J. Org. Chem., 2011, 1636.
[16] Chauhan P, Chimni S S. Tetrahedron Letters, 2013, 54:4613.
[17] Li G X, Qu J. Chem. Commun., 2012, 48:5518.
[18] Takizawa S, Hirata S, Murai K, Fujioka H, Sasai H. Org. Biomol. Chem., 2014, 12:5827.
[19] Kato M, Hirao S, Nakano K, Sato M, Yamanaka M, Sohtome Y, Nagasawa K. Chem. Eur. J., 2015, 21:18606.
[20] Bai S, Liao Y T, Lin L L, Luo W W, Liu X H, Feng X M. J. Org. Chem., 2014, 79:10662.
[21] Montesinos-Magraner M, Vila C, CantÓn R, Blay G, Fernández I, Muoñz M C, Pedro J R. Angew. Chem. Int. Ed., 2015, 54:6320.
[22] Kumari P, Barik S, Khan N H, Ganguly B, Kureshy R I, Abdi S H R, Bajaj H C. RSC Adv., 2015, 5:69493.
[23] Montesinos-Magraner M, Vila C, Rendón-Patiño A, Blay G, Fernández I, Muoñz M C, Pedro J R. ACS Catal., 2016, 6:2689.
[24] Zhou D, Huang Z, Yu X T, Wang Y X, Li J, Wang W, Xie H X. Org. Lett., 2015, 17:5554.
[25] Montesinos-Magraner M, CantÓn R, Vila C, Blay G, Fernández I, Muoñz M C, Pedro J R. RSC Adv., 2015, 5:60101.
[26] Kaya U, Chauhan P, Mahajan S, Deckers K, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int. Ed., 2017, 56:15358.
[27] Wang Y C, Jiang L, Li L, Dai J, Xiong D, Shao Z H. Angew. Chem. Int. Ed., 2016, 55:15142.
[28] Kaur J, Kumar A, Chimni S S. Tetrahedron Letters, 2014, 55:2138.
[29] Kumar A, Kaur J, Chauhan P, Chimni S S. Chem. Asian J., 2014, 9:1305.
[30] Kaur J, Kumar A, Chimni S S. RSC Adv., 2014, 4:62367.
[31] Montesinos-Magraner M, Vila C, Blay G, Fernández I M, Muoñz M C, Pedro J R. Adv. Synth. Catal., 2015, 357:3047.
[32] Vila C, Quintero L, Blay G, Muoñz M C, Pedro J R. Org. Lett., 2016, 18:5652.
[33] Sohtome Y, Shin B, Horitsugi N, Takagi R, Noguchi K, Nagasawa K. Angew. Chem. Int. Ed., 2010, 49:7299.
[34] Jarava-Barrera C, Esteban F, Navarro-Ranninger C, Parra A, Alemán J. Chem. Commun., 2013, 49:2001.
[35] Han X Y, Ye C, Chen F F, Chen Q, Wang Y J, Zeng X F. Org. Biomol. Chem., 2017, 15:3401.
[36] Jiang X X, Wu L P, Xing Y H, Wang L, Wang S C, Chen Z Y, Wang R. Chem. Commun., 2012, 48:446.
[37] Bai S, Liu X H, Wang Z, Cao W D, Lin L L, Feng X M. Adv. Synth. Catal., 2012, 354:2096.
[38] Paradisi E, Righi P, Mazzanti A, Ranieri S, Bencivenni G. Chem. Commun., 2012, 48:11178.
[39] Yoshida K, Itatsu Y, Fujino Y, Inoue H, Takao K. Angew. Chem. Int. Ed., 2016, 55:6734.
[40] Chen Y H, Cheng D J, Zhang J, Wang Y, Liu X Y, Tan B. J. Am. Chem. Soc., 2015, 137:15062.
[41] Xu C R, Zheng H F, Hu B W, Liu X H, Lin L L, Feng X M. Chem. Commun., 2017, 53:9741.
[42] Poulsen P H, Feu K S, Paz B M, Jensen F, Jørgensen K A. Angew.Chem. Int.Ed., 2015, 54:8203.
[43] Zhao Y L, Lou Q X, Wang L S, Hu W H, Zhao J L. Angew. Chem. Int. Ed., 2017, 56:338.
[44] Yu L L, Xie X H, Wu S, Wang R M, He W J, Qin D B, Liu Q Z, Jing L H. Tetrahedron Letters., 2013,54:3675.
[45] Zhang H H, Wang C S, Li C, Mei G J, Li Y, Shi F. Angew. Chem. Int. Ed., 2017, 56:116.
[46] Qin L, Wang P, Zhang Y X, Ren Z X, Zhang X, Da C S. Synlett, 2016, 27:571.
[47] Li S, Zhang J W, Li X L, Cheng D J, Tan B. J. Am. Chem. Soc., 2016, 138:16561.
[48] Wang Y F, Zhang C, Wang H J, Jiang Y D, Du X H, Xu D Q. Adv. Synth. Catal., 2017, 359:791.
[49] Paras N A, MacMillan W C. J. Am. Chem. Soc., 2001, 123:4370.
[50] Li G, Rowland G B, Rowland E B, Antilla J C. Org. Lett., 2007, 9:4065.
[51] Berini C, Minassian F, Pelloux-Leon N, Denis J N, Vallee Y, Philouze C. Org. Biomol. Chem., 2008, 6:2574.
[52] Cao C L, Zhou Y Y, Sun X L, Tang Y. Tetrahedron, 2008, 64:10676.
[53] Liu H, Lu S F, Xu J, Du D M. Chem. Asian J., 2008, 3:1111.
[54] Trost B M, Mueller C. J. Am. Chem. Soc., 2008, 130:2438.
[55] Blay G, Fernández I, Monleon A, Pedro J R, Vila C. Org. Lett., 2009, 11:441.
[56] Nakamura S, Sakurai Y, Nakashima H, Shibata N, Toru T. Synlett., 2009, 1639.
[57] Kashikura W, Itoh J, Mori K, Akiyama T. Chem Asian J., 2010, 5:470.
[58] Wang W T, Liu X H, Cao W D, Wang J, Lin L L, Feng X M. Chem. Eur. J., 2010, 16:1664.
[59] Cao Z P, Liu Y L, Liu Z Q, Feng X Q, Zhuang M Y, Du H F. Org. Lett., 2011, 13:2164.
[60] Zhang G Q. Org. Biomol. Chem., 2012, 10:2534.
[61] Özdemir H S, Sahin E, Çakici M, Kiliç H. Tetrahedron, 2015, 71:2882.
[62] Ma Q, Gong L, Meggers E. Org. Chem. Front., 2016, 3:1319.
[63] Singh P K, Singh V K. Org. Lett., 2010, 12:80.
[64] Liu L, Ma H L, Xiao Y M, Du F P, Qin Z H, Li N, Fu B. Chem. Commun., 2012, 48:9281.
[65] Hu Y B, Li Y N, Zhang S, Li C, Li L J, Zha Z G, Wang Z Y. Org. Lett., 2015, 17:4018.
[66] Zhang Y L, Yang N, Liu X H, Guo J, Zhang X Y, Lin L L, Hu C W, Feng X M. Chem. Commun., 2015, 51:8432.
[67] Riente P, Yadav J, Pericàs M A. Org. Lett., 2012, 14:3668.
[68] Pecchioli T, Muthyala M K, Haag R, Christmann M. Beilstein J. Org. Chem., 2015, 11:730.
[69] Huang Y Y, Suzuki S, Liu G K, Tokunaga E, Shiro M, Shibata N. New J. Chem., 2011, 35:2614.
[70] Oyama H, Nakada M. Tetrahedron:Asymmetry, 2015, 26:195.
[71] Wang S G, You S L. Angew. Chem. Int. Ed., 2014, 53:2194.
[72] Zhuo M H, Liu G F, Song S L, An D, Gao J, Zheng L, Zhang S. Adv. Synth. Catal., 2016, 358:808.
[73] Lian Y J, Davies H M L. Org. Lett., 2012, 14:1934.
[74] Brown S P, Goodwin N C, MacMillan D W C. J. Am. Chem. Soc., 2003, 125:1192.
[75] Uraguchi D, Sorimachi K, Terada M. J. Am. Chem. Soc., 2004, 126:11804.
[76] Liu H, Xu J X, Du D M. Org. Lett., 2007, 9:4725.
[77] Adachi S, Tanaka F, Watanabe K, Harada T. Org. Lett., 2009, 11:5206.
[78] Adachi S, Tanaka F, Watanabe K, Watada A, Harada T. Synthesis, 2010, 2652.
[79] Zhuang W, Gathergood N, Hazell R G, Jørgensen K A. J. Org. Chem., 2001, 66:1009.
[80] Saaby S, Bayón P, Aburel P S, Jørgensen K A. J. Org. Chem., 2002, 67:4352.
[81] Shirakawa S, Berger R, Leighton J L. J. Am. Chem. Soc., 2005, 127:2858.
[82] Majer J, Kwiatkowski P, Jurczak J. Org. Lett., 2009, 11:4636.
[83] Aikawa K, Asai Y, Hioki Y, Mikami K. Tetrahedron:Asymmetry, 2014, 25:1104.
[84] Li J L, Yue C Z, Chen P Q, Xiao Y C, Chen Y C. Angew. Chem. Int. Ed., 2014, 53:5449.
[85] Kondoh A, Ota Y, Komuro T, Egawa F, Kanomata K, Terada M. Chem. Sci., 2016, 7:1057.
[86] Yang G J, Du W, Chen Y C. J. Org. Chem., 2016, 81:10056.
[87] Zhang X R, Zhou S L, Yuan Y, Du W, Chen Y C. New York Synlett., 2017, 28:1771.
[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[3] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[4] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[5] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[6] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[7] 黄晚秋, 高苗苗, 窦红静. 聚吡咯及其纳米复合材料在光热治疗领域的应用[J]. 化学进展, 2020, 32(4): 371-380.
[8] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[9] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[10] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[11] 朱本占, 沈忱, 盛治国. 膜受体介导双酚A低剂量内分泌干扰效应的分子机制[J]. 化学进展, 2019, 31(1): 167-179.
[12] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
[13] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[14] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[15] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
阅读次数
全文


摘要

催化不对称傅-克反应研究进展