English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 775-784 DOI: 10.7536/PC171105 前一篇   后一篇

• 综述 •

二维光子晶体

陈诚1,2, 董志强1, 陈昊文1, 陈杨1, 朱志刚1,2*, 施惟恒1,3   

  1. 1. 上海第二工业大学工学部环境与材料工程学院 上海 201209;
    2. 上海材料创新研究院 上海 200444;
    3. 德雷塞尔大学材料工程系 美国宾夕法尼亚州 19104
  • 收稿日期:2017-11-07 修回日期:2017-12-24 出版日期:2018-06-15 发布日期:2018-01-30
  • 通讯作者: 朱志刚,e-mail:zgzhu@sspu.edu.cn E-mail:zgzhu@sspu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.61471233,21504051)、上海市教委曙光计划(14SG52)、上海高校特聘教授(东方学者)计划和上海第二工业大学研究生项目(No.EGD17YJ003)资助

Two-Dimensional Photonic Crystals

Cheng Chen1,2, Zhiqiang Dong1, Haowen Chen1, Yang Chen1, Zhigang Zhu1,2*, Weiheng Shih1,3   

  1. 1. School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China;
    2. Shanghai Innovation Institute for Materials, Shanghai 200444, China;
    3. Department of Materials Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
  • Received:2017-11-07 Revised:2017-12-24 Online:2018-06-15 Published:2018-01-30
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.61471233,21504051),the Shuguang Project supported by Shanghai Municipal Education Commission (14SG52),the Program for Professor of Special Appointment (Eastern Scholar) at SIHL,and the Graduate Program of Shanghai Polytechnic University (No.EGD17YJ003).
光子晶体是一种介电常数周期变化的功能材料,其基本特征是具有光子带隙。光子晶体理论诞生已三十年,基于理论及实验的研究取得了许多成绩。当所制备的光子带隙与光波的波长相当时,光子晶体材料抑制光子在一定频段内的传播。由于在光学、电学、热学、磁学等方面均有优良特性和潜在应用,光子晶体作为一种新型材料也越来越受到科研人员的青睐。不论在可加工性方面还是在传播特性方面,二维光子晶体的优势正逐渐体现出来。本文重点阐述二维光子晶体的研究进展,分别介绍了二维光子晶体的结构与性能特点以及近年来发展出的新型制备方法,如自组装法、刻蚀法、多光束干涉法等,并着重列举其在传感器、波导、光纤、太赫兹技术等领域的发展现状,表明二维光子晶体作为超材料具有巨大的发展空间和潜力。最后,本文对二维光子晶体今后的研究方向和发展前景作了展望。
Photonic crystal is a dimensionally periodic dielectric structure that exhibits a photonic band-gap (PBG). The theory of photonic crystal (PC) has been put forth for 30 years, and many achievements have been made based on theoretical and experimental research. PC materials inhibit photons from propagating for a certain band of frequencies with the fabricated PBG comparable to the wavelength of light, which have attracted more and more research interests due to its excellent properties and potential functional applications in optical, electrical, thermal and magnetic aspects. Furthermore, more and more efforts have been devoted to two-dimensional photonic crystals (2D PCs) due to their unique properties. In this paper, the characteristics of 2D PCs, including the preparation methods such as self-assembly, etching, and multiple-beam interference method, as well as its development status in waveguides, optical fibers, sensors, and terahertz technology in recent years are introduced. These developments show that the 2D PCs have great potentials as metamaterials. The future research focus and development direction of 2D PCs are prospected at last.
Contents
1 Introduction
2 Characteristics of 2D photonic crystals
2.1 Photonic band gap
2.2 Structural color and diffraction characteristics
2.3 Photon localization
2.4 Negative refraction
3 Preparation methods of 2D photonic crystals
3.1 Self-assembly method
3.2 Etching method
3.3 Multiple-beam interference method
3.4 Other methods
4 Applications of 2D photonic crystals
4.1 Sensors
4.2 Waveguides and integrated circuits
4.3 Optical fiber communication and terahertz technology
4.4 Other applications
5 Conclusion and outlook

中图分类号: 

()
[1] Yablonovitch E. Physical Review Letters, 1987, 58(20):2059.
[2] John S. Physical Review Letters, 1987, 58(23):2486.
[3] Chen C, Zhu Y H, Bao H, Yang X L, Li C Z. ACS Appl. Mater. Interfaces, 2010, 2(5):1499.
[4] Chen C, Zhu Z G, Zhu X G, Yu W, Liu M J, Ge Q Q, Shih W H. Mater. Res. Express., 2015, 2(4):046201.
[5] Chen C, Zhao X L, Li Z, Zhu Z G, Qian S H, Flewitt A J. Sensors, 2017, 2017, 17(1):182.
[6] Ruan J L, Chen C, Shen J H, Zhao X L, Qian S H, Zhu Z G. Polymers, 2017, 9(4):125.
[7] Xiao F B, Sun Y F, Du W F, Shi W H, Wu Y, Liao S Z, Wu Z Y, Yu R Q. Adv. Funct. Mater., 2017, DOI:10.1002/adfm.201702147.
[8] Zhang J T, Chao X, Liu X Y, Asher S A. Chemical Communications, 2013, 49(56):6337.
[9] Asher S A, Weissman J M, Tikhonov A, Coalson R D, Kesavamoorthy R. Physical Review E, 2004, 69:066619.
[10] Yoshie T, Vuckovic J, Scherer A, Chen H, Deppe D. Applied Physics Letters, 2001, 79(26):4289.
[11] Veselago V G. Soy. Phys. Usp., 1968, 10(4):509.
[12] Shelby R A, Smith D R, Schultz S. Science, 2001, 292(5514):77.
[13] Jiang P, Bertone J F, Hwang K S, Colvin V L. Chemistry of Materials, 1999, 11(8):2132.
[14] Villaescusa L A, Mihi A, Rodriguez I, Alfonso E G B, Míguez H. J. Phys. Chem. B, 2005, 109(42):19643.
[15] Jiang P, McFarland M J. J. Am. Chem. Soc., 2005, 127(11):3710.
[16] Alfrey T, Bradford E B, Vanderhoff J W. Journal of the Optical Society of America, 1954, 44(8):603.
[17] Velev O D, Denkov N D, Kralchevsky P A, Ivanovl I B, Yoshimura H, Nagayama K. Progr. Colloid. Polym. Sci., 1993, 93(3):366.
[18] Dimitrov A S, Nagayama K. Langmuir, 1996, 12(5):1303.
[19] Scriven L E, Sternling C V. Nature, 1960, 187(4733):186.
[20] Li C, Hong G S, Wang P W, Yu D P, Qi L M. Chem. Mater., 2009, 21(5):891.
[21] Zhang J T, Wang L L, Lamont D N, Velankar S S, Asher S A. Angew. Chem. Int. Ed., 2012, 51(25):6117.
[22] Ahn S, Kim H, Jeon H, Oh J R, Do Y R, Kim H J. Appl. Phys. Express., 2012, 5(4):042102.
[23] 李卫(Li W), 徐岭(Xu L), 孙萍(Sun P), 赵伟明(Zhao W M), 黄信凡(Huang X F), 徐骏(Xu J), 陈坤基(Chen K J). 物理学报(Acta Physica Sinica), 2006, 56(7):4242.
[24] Liu G Q, Cai W P. Crystals, 2016, 6(10):126.
[25] Li Y, Cai W P, Duan G T. Chem. Mater., 2007, 20(3):615.
[26] Zhang J H, Li Y F, Zhang X M, Yang B. Adv. Mater., 2010, 22(38):4249.
[27] Li Y, Duan G T, Liu G Q, Cai W P. Chem. Soc. Rev., 2013, 42(8):3614.
[28] 张刚(Zhang G), 赵志远(Zhao Z Y), 汪大洋(Wang D Y).高等学校化学学报(Chemical Journal of Chinese Universities), 2010, 31(5):839.
[29] Geng C, Wei T B, Wang X Q, Shen D Z, Hao Z B, Yan Q F. Small, 2014, 10(9):1668.
[30] Ye X Z, Qi L M. Sci. China Chem., 2014, 57(1):58.
[31] Li C, Hong G S, Qi L M. Chem. Mater., 2010, 22(2):476.
[32] Cai L Z, Yang X L, Wang Y R. Optics Letters, 2002, 27(11):900.
[33] Cai L Z, Yang X L, Liu Q, Wang Y R. Optics Communications, 2003, 224(4):243.
[34] Mao W D, Zhong Y C, Dong J W, Wang H Z. J. Opt. Soc. Am. B, 2005, 22(5):1085.
[35] Wang X, Su H M, Zhang L Z, He Y J, Zheng X G, Wang H Z. Appl. Opt., 2001, 40(31):5588.
[36] Wang X, Xu J F, Su H M, Zeng Z H, Chen Y L, Wang H Z, Pang Y K, Tam W Y. Appl. Phys. Lett., 2003, 82(14):2212.
[37] Wu L J, Zhong Y C, Wong K S, Wang G P, Yuan L. Appl. Phys. Lett., 2006, 88(9):0911509115.
[38] Cao Y Y, Zhang Y G, Li Y Y, Gu Y, Li A Z, Li H. J. Infrared Millim Waves, 2014, 33(1):45.
[39] Wendt J R, Vawter G A, Gourley P L, Brennan T M, Hammons B E. J. Vac. Sci. Technol., 1993, 11(6):2637.
[40] Englund D, Faraon A, Fushman I, Stoltz N, Petroff P, Vukovi J. Nature, 2007, 450(7171):857.
[41] Chelnokov A, David S, Wang K, Marty F, Lourtioz J M. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(4):919.
[42] Araghchini M, Yeng Y X, Jovanovic N, Bermel P, Kolodziejski L A, Solja D? i? M, Celanovic I, Joannopoulos J D. Journal of Vacuum Science & Technology B, 2011, 29(6):061402.
[43] 赵年顺(Zhao N S). 科技视界(Science & Technology Vision), 2015, 33:142.
[44] Zlatanovic S, Mirkarimi L W, Sigalas M M, Bynum M A, Chow E, Robotti K M, Burr G W, Esener S, Grot A. Sensors and Actuators B:Chemical, 2009, 141(1):13.
[45] Zhang J T, Wang L L, Chao X, Asher S A. Langmuir, 2011, 27(24):15230.
[46] Zhang J T, Smith N, Asher S A. Anal. Chem., 2012, 84(15):6416.
[47] Men D D, Zhou F, Hang L F, Li X Y, Duan G T, Cai W P, Li Y. J. Mater. Chem. C, 2016, (4):2117.
[48] Chen C, Dong Z Q, Chen Y, Hu X B, Zhu X R, Zhu Z G, Qian S H, Shih W H. IOP Conference Series:Materials Science and Engineering, 2017, 167:012073.
[49] Dalstein O, Ceratti D R, Boissière C, Grosso D, Cattoni A, Faustini M. Adv. Funct. Mater., 2016, 26(1):81.
[50] O'Faolain L, Yuan X, McIntyre D, Thoms S, Chong H, de La Rue R M, Krauss T F. Electronics Letters, 2006, 42(25):1454.
[51] Soldano L B, Pennings E C M. Journal of Lightwave Technology, 1995, 13(4):615.
[52] Krauss T F. J. Phys. D:Appl. Phys., 2007, 40(9):2666.
[53] Tada T, Poborchii V V, Kanayama T. Microelectronic Engineering, 2002, 63(1):259.
[54] Grillet C, Smith C, Freeman D, Madden S, Luther-Davies B, Magi E C, Moss D J, Eggleton B J. Optics Express, 2006, 14(3):1070.
[55] Suzuki K, Hamachi Y, Baba T. Optics Express, 2009, 17(25):22393.
[56] Moniem T A. Journal of Modern Optics, 2015, 62(19):1643.
[57] Moniem T A, El-Din E S. Optics Communications, 2017, 402:36.
[58] Youssefi B, Moravvej-Farshi M K, Granpayeh N. Optics Communications, 2012, 285(13):3228.
[59] Rashki Z, Mahdavi C S J. Optics Communications, 2016, 395:231.
[60] Russell P S J, Knight J C, Birks T A, Mangan S J, Wadsworth W J. Proc. OFC, 2000, 3:98.
[61] Knight J C, Birks T A, Russell P S J, Atkin D M. Opt. Lett., 1996, 21(19):1547.
[62] Cregan R F, Mangan B J, Knightt J C, Birks T A, Russell P S J, Roberts P J, Allan D C. Science, 1999, 285(3):1537.
[63] Zhang Y F, Chan C C, Sun J. Sensors and Actuators A:Physical, 2010, 157(2):276.
[64] Nemec H, Kuel P, Duvillaret L, Pashkin A, Dressel M, Sebastian M T. Optics Letters, 2005, 30(5):549.
[65] Dysdale T D, Blaikie R J, Cumming D R S. Appl. Phys. Lett., 2003, 83(26):5362.
[66] Li Z J, Zhang Y, Li B J. Optics Express, 2006, 14(9):3887.
[67] Tiwari R N, Kumar P, Singh G. Optics Letters, 2008,18:787.
[68] Withayachumnankul W, Fumeaux C. Nature Photonics, 2014, 8:586.
[69] Kim J I, Jeon S G, Kim G J, Kim J, Lee H H, Park S H. J. Infrared Milli Terahz. Waves, 2012, 33(2):206.
[70] Kitagawa J, Kodama M, Koya S, Nishifuji Y, Armand D, Kadoya Y. Optics Express, 2012, 20(16):17271.
[71] 潘武(Pan W), 尹霞(Yi X), 承皓(Cheng H), 李选(Li X).光器件(Optical Device), 2017, 3:23.
[72] 陈琦(Chen Q), 何晓阳(He X Y), 张健(Zhang J). 太赫兹科学与电子信息学报(Journal of Terahertz Science and Electronic Information Technology), 2015, 13(4):525.
[73] Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose K A, Baumann T F. Energy Environ Sci., 2011, 4(3):656.
[74] Dunn B, Zink J I. Acc. Chem. Res., 2007, 40(9):747.
[75] Leventis N. Acc. Chem. Res., 2007, 40(9):874.
[76] Shen J H, Zhu Y H, Jiang H, Li C Z. Nano Today, 2016,11(4):483.
[77] Meng K, Gao S S, Wu L L, Wang G, Liu X, Chen G, Liu Z, Chen G. Nano Letters, 2016, 16(7):4166.
[78] Yeng Y X, Ghebrebrhan M, Bermel P, Chan W R, Joannopoulos J D, Solja D?i? M, Celanovic I. Proc. Natl. Acad. Sci., 2012, 109(7):2280.
[79] Rinnerbauer V, Ndao S, Yeng Y X, Senkevich J J, Jensen K F, Joannopoulos J D, Solja D?i? M, Celanovic I, Geil R D. J. Vac. Sci. Technol. B, 2013, 31(1):011802.
[80] Chou J B, Yeng Y X, Lee Y E, Lenert A, Rinnerbauer V, Celanovic I, Solja D?i? M, Fang N X, Wang E N, Kim S G. Adv. Mater., 2014, 26(47):8041.
[81] Umh H N, Yu S J, Kim Y H, Lee S Y, Yi J H. ACS Appl. Mater. Interf., 2016, 8(24):15802.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[4] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[5] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[6] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[7] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[8] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[9] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[10] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[11] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[12] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[13] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[14] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[15] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
阅读次数
全文


摘要

二维光子晶体