English
新闻公告
More
化学进展 2018, Vol. 30 Issue (1): 124-136 DOI: 10.7536/PC171102 前一篇   

• 综述 •

氧气催化氧化环己烷

佘远斌, 邓金辉, 张龙, 沈海民*   

  1. 浙江工业大学化学工程学院 绿色化学合成技术国家重点实验室培育基地 杭州 310014
  • 收稿日期:2017-11-01 修回日期:2017-12-12 出版日期:2018-01-15 发布日期:2017-12-13
  • 通讯作者: 沈海民,e-mail:haimshen@zjut.edu.cn E-mail:haimshen@zjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21476270,21306176,21776259)资助

Catalytic Oxidation of Cyclohexane by O2 as an Oxidant

Yuanbin She, Jinhui Deng, Long Zhang, Haimin Shen*   

  1. College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2017-11-01 Revised:2017-12-12 Online:2018-01-15 Published:2017-12-13
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476270, 21306176, 21776259).
本文系统综述了O2氧化剂用于环己烷催化氧化体系的研究进展,包括金属配合物催化、金属纳米粒子催化、金属氧化物粒子催化、分子筛催化、碳材料催化、光促进催化、杂多酸催化、金属-有机骨架材料催化等。本文认为研究、开发以O2为氧化剂,高活性高选择性的非均相环己烷催化氧化体系将成为今后环己烷催化氧化研究的主要方向,尤其是多金属甚至多元素复合体系。本综述不仅对开发高催化活性高选择性的环己烷催化氧化体系,改进目前工业上的环己醇环己酮制备工艺具有重要的参考价值,而且还对其他烃类C-H键和C-C键高效催化氧化体系甚至其他氧化体系的研究与开发也具有重要的参考价值。
Recent progress in catalytic oxidation of cyclohexane employing O2 as an oxidant have been reviewed, including the metal complex catalysis, metal nanoparticle catalysis, metal oxide particle catalysis, molecular sieve catalysis, carbon material catalysis, photo-promotion catalysis, polyoxometalates catalysis, metal-organic framework material catalysis and so on. It is pointed out that the research and development of heterogeneous catalytic system by O2 as an oxidant with high activity and selectivity will be the focus of catalytic oxidation of cyclohexane in the future, especially for the multi-metal composite system, even the multi-element composite system. This paper will not only act as an important reference in the research and development of catalytic system of cyclohexane with high activity and selectivity, and to improve the preparation process of cyclohexanol and cyclohexanone in industry, but also act as an important reference in the research and development of catalytic system for other hydrocarbon oxidation and non-hydrocarbon oxidation.
Contents
1 Introduction
2 Metal complex catalysis
2.1 Non metalloporphyrin catalysis
2.2 Metalloporphyrin catalysis
3 Metal nanoparticle catalysis
4 Metal oxide particle catalysis
5 Molecular sieve catalysis
6 Carbon material catalysis
7 Photo-promotion catalysis
8 Other catalysis
9 Conclusion

中图分类号: 

()
[1] Hitomi Y, Arakawa K, Funabiki T, Kodera M. Angew. Chem. Int. Ed., 2012, 51:3448.
[2] Perraud O, Sorokin A B, Dutasta J P, Martinez A. Chem. Commun., 2013, 49:1288.
[3] Garcia-Bosch I, Siegler M A. Angew. Chem. Int. Ed., 2016, 55:12873.
[4] Wang B, Lee Y M, Clemancey M, Seo M S, Sarangi R, Latour J M, Nam W. J. Am. Chem. Soc., 2016, 138:2426.
[5] Xie Y J, Zhang F Y, Liu P L, Hao F, Luo H A. Ind. Eng. Chem. Res., 2015, 54:2425.
[6] Huang G, Liu Y, Cai J L, Chen X F, Zhao S K, Guo Y A, Wei S J, Li X. Appl. Surf. Sci., 2017, 402:436.
[7] Machado G S, de Lima O J, Ciuffi K J, Wypych F, Nakagaki S. Catal. Sci. Technol., 2013, 3:1094.
[8] Ucoski G M, Castro K A D D, Ciuffi K J, Ricci G P, Marques J A, Nunes F S, Nakagaki S. Appl. Catal. A-Gen., 2011, 404:120.
[9] Machado G S, Wypych F, Nakagaki S. Appl. Catal. A-Gen., 2012, 413:94.
[10] Ferreira G K B, Castro K A D D, Machado G S, Ribeiro R R, Ciuffi K J, Ricci G P, Marques J A, Nakagaki S. J. Mol. Catal. A-Chem., 2013, 378:263.
[11] Barbosa I A, de Sousa P C, da Silva D L, Zanardi F B, Zanatta L D, de Oliveira A J A, Serra O A, Iamamoto Y. J. Colloid Interface Sci., 2016, 469:296.
[12] Da Silva V S, Teixeira L I, do Nascimento E, Idemori Y M, DeFreitas-Silva G. Appl. Catal. A-Gen., 2014, 469:124.
[13] Da Silva V S, Meireles A M, Martins D C D, Reboucas J S, DeFreitas-Silva G, Idemori Y M. Appl. Catal. A-Gen., 2015, 491:17.
[14] Da Silva V S, dos Santos Vieira W C, Meireles A M, Ucoski G M, Nakagaki S, Idemori Y M, DeFreitas-Silva G. New J. Chem., 2017, 41:997.
[15] Singha S, Parida K M, Dash A C. J. Porous Mater., 2011, 18:707.
[16] Feng D W, Jiang H L, Chen Y P, Gu Z Y, Wei Z W, Zhou H C. Inorg. Chem., 2013, 52:12661.
[17] Sharbatdaran M, Farzaneh F, Larijani M M, Salimi A, Ghiasi M, Ghandi M. Polyhedron, 2016, 115:264.
[18] Khomane S B, Doke D S, Dongare M K, Halligudi S B, Umbarkar S B. Appl. Catal. A-Gen., 2017, 531:45.
[19] Zhang Y C, Zhao L Y, Zhang H Y, Huang R, Zhao J Q. Appl. Organomet. Chem., 2017, 31:3709.
[20] Bose S, Pariyar A, Biswas A N, Das P, Bandyopadhyay P. Catal. Commun., 2011, 12:1193.
[21] Balamurugan M, Mayilmurugan R, Suresh E, Palaniandavar M. Dalton Trans., 2011, 40:9413.
[22] Sankaralingam M, Vadivelu P, Suresh E, Palaniandavar M. Inorg. Chim. Acta, 2013, 407:98.
[23] Zhang S B, Wang H, Li M, Han J Y, Liu X, Gong J L. Chem. Sci., 2017, 8:4489.
[24] Zadehahmadi F, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Khosropour A R, Kardanpour R. Appl. Catal. A-Gen., 2014, 477:34.
[25] Pires B M, Silva D M, Visentin L C, Drago V, Carvalho N M F, Faria R B, Antunes O A C. Inorg. Chim. Acta, 2013, 407:69.
[26] Grau M, Kyriacou A, Martinez F C, de Wispelaere I M, White A J P, Britovsek G J P. Dalton Trans., 2014, 43:17108.
[27] Kirillova M V, de Paiva P T, Carvalho W A, Mandelli D, Kirillov A M. Pure Appl. Chem., 2017, 89:61.
[28] Chand S S, Sinha S. J. Appl. Polym. Sci., 2013, 130:2127.
[29] Rodionova L I, Smirnov A V, Borisova N E, Khrustalev V N, Moiseeva A A, Grunert W. Inorg. Chim. Acta, 2012, 392:221.
[30] Machado K, Mishra J, Suzuki S, Mishra G S. Dalton Trans., 2014, 43:17475.
[31] Liu C C, Ramu R, Chan S I, Mou C Y, Yu S S F. Catal. Sci. Technol., 2016, 6:7623.
[32] Huang G, Wang W L, Ning X X, Liu Y, Zhao S K, Guo Y A, Wei S J, Zhou H. Ind. Eng. Chem. Res., 2016, 55:2959.
[33] Wu P P, Xiong Z G, Loh K P, Zhao X S. Catal. Sci. Technol., 2011, 1:285.
[34] Zhou J C, Yang X F, Wang Y Q, Chen W J. Catal. Commun., 2014, 46:228.
[35] Alshammari A, Kalevaru V N, Martin A. Catalysts, 2016, 6:97.
[36] Song X F, Hao J M, Bai Y J, Han L M, Yan G F, Lian X, Liu J S. New J. Chem., 2017, 41:4031.
[37] Liu X, Conte M, Weng W H, He Q, Jenkins R L, Watanabe M, Morgan D J, Knight D W, Murphy D M, Whiston K, Kiely C J, Hutchings G J. Catal. Sci. Technol., 2015, 5:217.
[38] Conte M, Liu X, Murphy D M, Taylor S H, Whiston K, Hutchings G J. Catal. Lett., 2016, 146:126.
[39] Li J, Shi Y, Xu L, Lu G Z. Ind. Eng. Chem. Res., 2010, 49:5392.
[40] Duan X G, Liu W M, Yue L M, Fu W, Ha M N, Li J, Lu G Z. Dalton Trans., 2015, 44:17381.
[41] Cao Y H, Luo X Y, Yu H, Peng F, Wang H J, Ning G Q. Catal. Sci. Technol., 2013, 3:2654.
[42] Ide Y, Iwata M, Yagenji Y, Tsunoji N, Sohmiya M, Komaguchi K, Sano T, Sugahara Y. J. Mater. Chem. A, 2016, 4:15829.
[43] Wang H, Zhang Y, Guo Y Y, Zhang L M, Han Y, Zhao X X. RSC Adv., 2016, 6:38176.
[44] Tsukamoto D, Shiro A, Shiraishi Y, Hirai T. J. Phys. Chem. C, 2011, 115:19782.
[45] Tang S P, Wu W F, Fu Z H, Zou S, Liu Y C, Zhao H H, Kirk S R, Yin D L. ChemCatChem, 2015, 7:2637.
[46] Lu H Y, Ren W Z, Liu P F, Qi S X, Wang W H, Feng Y M, Sun F X, Wang Y W. Appl. Catal. A-Gen., 2012, 441:136.
[47] Maksimchuk N V, Kovalenko K A, Fedin V P, Kholdeeva O A. Chem. Commun., 2012, 48:6812.
[48] Long J L, Wang L M, Gao X F, Bai C H, Jiang H F, Li Y W. Chem. Commun., 2012, 48:12109.
[49] Silva A R, Mourao T, Rocha J. Catal. Today, 2013, 203:81.
[50] Rana S, Jonnalagadda S B. Chemistryselect, 2017, 2:2277.
[51] Martins L M D R D, Carabineiro S A C, Wang J W, Rocha B G M, Maldonado-Hodar F J, Pombeiro A J L D. ChemCatChem, 2017, 9:1211.
[52] Liu X, Conte M, He Q, Knight D W, Murphy D M, Taylor S H, Whiston K, Kiely C J, Hutchings G J. Chem. -Eur. J., 2017, 23:11834.
[53] Xiao Y P, Liu J C, Lin Y T, Lin W J, Fang Y X. J. Alloys Compd., 2017, 698:170.
[54] Martins L M D R S, de Almeida M P, Carabineiro S A C, Figueiredo J L, Pombeiro A J L. ChemCatChem, 2013, 5:3847.
[55] Denicourt-Nowicki A, Lebedeva A, Bellini C, Roucoux A. ChemCatChem, 2016, 8:357.
[56] Yuan Y, Ji H B, Chen Y X, Han Y, Song X F, She Y B, Zhong R G. Org. Process Res. Dev., 2004, 8:418.
[57] Chen Y, She Y B, Xu J, Li Y. Front. Chem. Eng. China, 2007, 1:155.
[58] Li H, She Y B, Wang T. Front. Chem. Sci. Eng., 2012, 6:356.
[59] Wang T, She Y B, Fu H Y, Li H. Catal. Today, 2016, 264:185.
[60] Li H, She Y B, Fu H Y, Cao M J, Wang J, Wang T. Can. J. Chem., 2015, 93:696.
[61] Cao M J, She Y B, Fu H Y, Yu Y M, Li H, Wang T. Mol. Simulat., 2015, 41:262.
[62] Zhu X H, Chen Y Z, Zhang F W, Niu J R, Xie M, Ma J T. RSC Adv., 2014, 4:2509.
[63] Machado K, Mukhopadhyay S, Mishra G S. J. Mol. Catal. A-Chem., 2015, 400:139.
[64] Yuan X, Shan G F, Li L X, Wu J, Luo H A. Catal. Lett., 2015, 145:868.
[65] Mishra G S, Kumar A, Mukhopadhyay S, Tavares P B. Appl. Catal. A-Gen., 2010, 384:136.
[66] Tabor E, Poltowicz J, Pamin K, Basag S, Kubiak W. Polyhedron, 2016, 119:342.
[67] Huang G, Guo C C, Tang S S. J. Mol. Catal. A-Chem., 2007, 261:125.
[68] Fu B, Yu H C, Huang J W, Zhao P, Liu J, Ji L N. J. Mol. Catal. A-Chem., 2009, 298:74.
[69] Huang G, Liu S Y, Guo Y A, Wang A P, Luo J, Cai C C. Appl. Catal. A-Gen., 2009, 358:173.
[70] Huang G, Li T M, Liu S Y, Fan M G, Jiang Y X, Guo Y A. Appl. Catal. A-Gen., 2009, 371:161.
[71] Huang G, Luo Z C, Hu Y D, Guo Y A, Jiang Y X, Wei S J. Chem. Eng. J., 2012, 195:165.
[72] Fan M G, Luo Z C, Huang G, Xiang F, Guo Y A, Zhou H. J. Exp. Nanosci., 2013, 8:640.
[73] Huang G, Shen L, Luo Z C, Hu Y D, Guo Y A, Wei S J. Catal. Commun., 2013, 32:108.
[74] Huang G, Wang P, Shen L, Wei Y X, Zeng K, Wei S J. Mater. Sci. Eng. C-Mater., 2015, 49:844.
[75] Xie Y J, Zhang F Y, Liu P L, Hao F, Luo H A. J. Mol. Catal. A-Chem., 2014, 386:95.
[76] Liu Y M, Tsunoyama H, Akita T, Xie S H, Tsukuda T. ACS Catal., 2011, 1:2.
[77] Gui Z Y, Cao W R, Chen L F, Qi Z W. Catal. Commun., 2015, 64:58.
[78] Chen L F, Zhou Y Y, Gui Z Y, Cheng H Y, Qi Z W. J. Mater. Sci., 2017, 52:7186.
[79] Yang X X, Li Y H, Yu H, Gui X C, Wang H J, Huang H Y, Peng F. Aust. J. Chem., 2016, 69:689.
[80] Wang L B, Zhao S T, Liu C X, Li C, Li X, Li H L, Wang Y C, Ma C, Li Z Y, Zeng J. Nano Lett., 2015, 15:2875.
[81] Huang C L, Zhang H Y, Sun Z Y, Liu Z M. Sci. China Chem., 2010, 53:1502.
[82] Qadir M I, Scholten J D, Dupont J. J. Mol. Catal. A-Chem., 2014, 383:225.
[83] Wu M Z, Zhan W C, Guo Y, Wang Y S, Guo Y L, Gong X Q, Wang L, Lu G Z. Chinese J. Catal., 2016, 37:184.
[84] Wu M Z, Zhan W C, Guo Y L, Guo Y, Wang Y S, Wang L, Lu G Z. Appl. Catal. A-Gen., 2016, 523:97.
[85] Unnarkat A P, Sridhar T, Wang H T, Mahajani S, Suresh A K. AIChE J., 2016, 62:4384.
[86] Xiao Z, Zhan W C, Guo Y, Guo Y L, Gong X Q, Lu G Z. Chinese J. Catal., 2016, 37:273.
[87] Fu Y, Zhan W C, Guo Y L, Wang Y Q, Liu X H, Guo Y, Wang Y S, Lu G Z. Micropor. Mesopor. Mater., 2015, 214:101.
[88] Li J, Li X, Shi Y, Mao D S, Lu G Z. Catal. Lett., 2010, 137:180.
[89] Zhou L, Xu J, Chen C, Wang F, Li X. J. Porous. Mater., 2008, 15:7.
[90] Zou G Q, Zhong W Z, Xu Q, Xiao J F, Liu C, Li Y Q, Mao L Q, Kirk S, Yin D L. Catal. Commun., 2015, 58:46.
[91] Yu H, Peng F, Tan J, Hu X W, Wang H J, Yang J A, Zheng W X. Angew. Chem. Int. Ed., 2011, 50:3978.
[92] Chen K, Chai Z G, Li C, Shi L R, Liu M X, Xie Q, Zhang Y F, Xu D S, Manivannan A, Liu Z F. ACS Nano, 2016, 10:3665.
[93] Wang X, Li Y W. J. Mater. Chem. A, 2016, 4:5247.
[94] Li X H, Chen J S, Wang X C, Sun J H, Antonietti M. J. Am. Chem. Soc., 2011, 133:8074.
[95] Yang X X, Wang H J, Li J, Zheng W X, Xiang R, Tang Z K, Yu H, Peng F. Chem. -Eur. J., 2013, 19:9818.
[96] Shiraishi Y, Sugano Y, Ichikawa S, Hirai T. Catal. Sci. Technol., 2012, 2:400.
[97] Ide Y, Kawamoto N, Bando Y, Hattori H, Sadakane M, Sano T. Chem. Commun., 2013, 49:3652.
[98] Yang D X, Wu T B, Chen C J, Guo W W, Liu H Z, Han B X. Green Chem., 2017, 19:311.
[99] Zhong W Z, Qiao T, Dai J, Mao L Q, Xu Q, Zou G Q, Liu X X, Yin D L, Zhao F P. J. Catal., 2015, 330:208.
[100] Shiraishi Y, Shiota S, Hirakawa H, Tanaka S, Ichikawa S, Hirai T. ACS Catal., 2017, 7:293.
[101] Zhang Y L, Hu L L, Zhu C, Liu J, Huang H, Liu Y, Kang Z H. Catal. Sci. Technol., 2016, 6:7252.
[102] Hayashi Y, Komiya N, Suzuki K, Murahashi S I. Tetrahedron Lett., 2013, 54:2706.
[103] Guha S K, Obora Y, Ishihara D, Matsubara H, Ryu I, Ishii Y. Adv. Synth. Catal., 2008, 350:1323.
[104] Sadiq M, Ali M, Iqbal R, Saeed K, Khan A, Umar M N, Rashid H U. J. Chem. Sci., 2015, 127:1167.
[105] Szymańska A, Nitek W, Oszajca M, ?asocha W, Pamin K, Po?towicz J. Catal. Lett., 2016, 146:998.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[3] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[8] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[9] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[10] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[11] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[12] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[13] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[14] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[15] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
阅读次数
全文


摘要

氧气催化氧化环己烷