English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 921-931 DOI: 10.7536/PC171026 前一篇   后一篇

所属专题: 计算化学

• 综述 •

重要性采样方法与自由能计算

陈淏川1, 付浩浩1, 邵学广1,2, 蔡文生1*   

  1. 1. 南开大学化学学院分析科学研究中心 天津市生物传感与分子识别重点实验室 天津化学化工协同创新中心 天津 300071;
    2. 南开大学药物化学生物学国家重点实验室 天津 300071
  • 收稿日期:2017-10-27 修回日期:2018-01-14 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 蔡文生 E-mail:wscai@nankai.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21373117,21773125)资助

Importance Sampling Methods and Free Energy Calculations

Haochuan Chen1, Haohao Fu1, Xueguang Shao1,2, Wensheng Cai1*   

  1. 1. Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Nankai University, Tianjin 300071, China;
    2. State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
  • Received:2017-10-27 Revised:2018-01-14 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21373117, 21773125).
分子动力学模拟与自由能计算已经在化学、生物学与材料学等领域得到广泛的应用。然而,由于在传统分子动力学模拟的时间尺度内,体系很难跨越较高的自由能能垒,在相空间内的采样大大受限,采样困难使自由能计算难以收敛。增强采样是解决这一问题的有效途径,重要性采样方法就是其中一类。本文综述了四种广泛应用的重要性采样方法——伞状采样方法、metadynamics方法、自适应偏置力方法和温度加速分子动力学方法的原理和进展,其中重点概述了自适应偏置力方法的最新发展——扩展自适应偏置力方法和扩展广义自适应偏置力方法,并对这四种重要性采样方法的优缺点进行了比较。最后,讨论和展望了重要性采样与自由能计算方法面临的挑战和前景,并提出了对自适应偏置力方法可能的改进,如与加速分子动力学(aMD)或弦方法结合以提高在高维度空间中的采样效率。
Molecular dynamics(MD) simulations with free energy calculations have been widely applied to chemistry, biology and material science. However, within the timescale of conventional MD simulations, ergodic sampling in phase space is limited due to high free-energy barriers. Insufficient sampling may, in turn, lead to poor convergence of the free energy calculations based on conventional MD simulations. Enhanced sampling is a powerful technique to overcome this difficulty, among which importance sampling method is the most representative one. In this paper, the principles and progress of four prevalent importance sampling methods, namely, umbrella sampling(US), metadynamics(MtD), adaptive biasing force(ABF) and temperature accelerated molecular dynamics(TAMD), are described and reviewed. In particular, the recent developments of ABF, such as the extended ABF(eABF) considered as the second generation of ABF, and the extended generalized ABF(egABF) methods designed for high dimensional sampling, are comprehensively summarized. The advantages and disadvantages of US, MtD, TAMD and ABF with their variants are presented and compared. Furthermore, challenges and outlooks for free energy calculation with importance sampling methods are discussed and prospected. Specifically, possible further improvements to current ABF methods, such as combination with accelerated molecular dynamics(aMD) simulations or string methods to enhance sampling efficiency in high-dimensional spaces are put forward.
Contents
1 Introduction
2 Umbrella sampling
3 Metadynamics
4 Adaptive biasing force
4.1 Extended adaptive biasing force
4.2 Extended generalized adaptive biasing force
5 Temperature accelerated molecular dynamics
6 Conclusion and outlook

中图分类号: 

()
[1] Abrams C, Bussi G. Entropy, 2014, 16(1):163.
[2] Bernardi R C, Melo M C R, Schulten K. Biochim. Biophys. Acta., 2015, 1850(5):872.
[3] Chipot C, Pohorille A. Free Energy Calculations. New York:Springer, 2007.
[4] Michel J, Essex J W. J. Comput. Aided. Mol. Des., 2010, 24(8):639.
[5] Perez A, Morrone J A, Simmerling C, Dill K A. Curr. Opin. Struct. Biol., 2016, 36:25.
[6] Okamoto Y. J. Mol. Graph. Model., 2004, 22(5):425.
[7] Sugita Y, Okamoto Y. Chem. Phys. Lett., 1999, 314(1):141.
[8] Sugita Y, Okamoto Y. Chem. Phys. Lett., 2000, 329(3):261.
[9] Sugita Y, Kitao A, Okamoto Y. J. Chem. Phys., 2000, 113(15):6042.
[10] Voter A F. Phys. Rev. Lett., 1997, 78(20):3908.
[11] Hamelberg D, Mongan J, McCammon J A. J. Chem. Phys., 2004, 120(24):11919.
[12] Jing Z F, Sun H. J. Chem. Theory Comput., 2015, 11(6):2395.
[13] Miao Y L, Feher V A, McCammon J A. J. Chem. Theory Comput., 2015, 11(8):3584.
[14] Gao Y Q. J. Chem. Phys., 2008, 128(6):064105.
[15] 杨立江(Yang L J),邵强(Shao Q),高毅勤(Gao Y Q). 化学进展(Progress in Chemistry), 2012, 24(6):1199.
[16] Torrie G M, Valleau J P. J. Comput. Phys., 1977, 23(2):187.
[17] Kästner J. Wires. Comput. Mol. Sci., 2011, 1(6):932.
[18] Laio A, Parrinello M. Proc. Natl. Acad. Sci., 2002, 99(20):12562.
[19] Laio A, Gervasio F L. Rep. Prog. Phys., 2008, 71(12):126601.
[20] Barducci A, Bonomi M, Parrinello M. Wires. Comput. Mol. Sci., 2011, 1(5):826.
[21] Darve E, Pohorille A. J. Chem. Phys., 2001, 115(20):9169.
[22] Hénin J, Chipot C. J. Chem. Phys., 2004, 121(7):2904.
[23] Darve E, Rodríguez-Gómez D, Pohorille A. J. Chem. Phys., 2008, 128(14):144120.
[24] Comer J, Gumbart J C, Hénin J, Lelièvre T, Pohorille A, Chipot C. J. Phys. Chem. B, 2015, 119(3):1129.
[25] Maragliano L, Vanden-Eijnden E. Chem. Phys. Lett., 2006, 426(1):168.
[26] Abrams J B, Tuckerman M E. J. Phys. Chem. B, 2008, 112(49):15742.
[27] Lelièvre T, Rousset M, Stoltz G. J. Chem. Phys., 2007, 126(13):134111.
[28] Zhao T F, Fu H H, Lelièvre T, Shao X G, Chipot C, Cai W S. J. Chem. Theory Comput., 2017, 13(4):1566.
[29] Kumar S, Rosenberg J M, Bouzida D, Swendsen R H, Kollman P A. J. Comput. Chem., 1992, 13(8):1011.
[30] Kästner J, Thiel W. J. Chem. Phys., 2005, 123(14):144104.
[31] Kästner J. J. Chem. Phys., 2009, 131(3):034109.
[32] Kästner J. J. Chem. Phys., 2012, 136(23):234102.
[33] Kim L, Allen T W. J. Chem. Phys., 2012, 136(16):164103.
[34] Shirts M R, Chodera J D. J. Chem. Phys., 2008, 129(12):124105.
[35] Mezei M. J. Comput. Phys., 1987, 68(1):237.
[36] Bartels C, Karplus M. J. Comput. Chem., 1997, 18(12):1450.
[37] Wojtas-Niziurski W, Meng Y, Roux B, Bernèche S. J. Chem. Theory Comput., 2013, 9(4):1885.
[38] Banavali N K, MacKerell A D. J. Mol. Biol., 2002, 319(1):141.
[39] Giudice E, Várnai P, Lavery R. Nucleic Acids Res., 2003, 31(5):1434.
[40] Lee J, Kim Y, Kim K K, Seok C. J. Phys. Chem. B, 2010, 114(30):9872.
[41] Guo Z Y, Brooks C L, Boczko E M. Proc. Natl. Acad. Sci., 1997, 94(19):10161.
[42] Wang J N, Shao Q, Xu Z J, Liu Y T, Yang Z, Cossins B P, Jiang H L, Chen K X, Shi J Y, Zhu W L. J. Phys. Chem. B, 2014, 118(1):134.
[43] Meshkin H, Zhu F Q. J. Chem. Theory Comput., 2017, 13(5):2086.
[44] Bagai S, Sun C B, Tang T. J. Phys. Chem. B, 2013, 117(1):49.
[45] Zhang Z L, Wu Y Y, Xi K, Sang J P, Tan Z J. Biophys. J., 2017, 113(3):517.
[46] Deng N J, Cieplak P. Biophys. J., 2010, 98(4):627.
[47] Dickson A, Maienschein-Cline M, Tovo-Dwyer A, Hammond J R, Dinner A R. J. Chem. Theory Comput., 2011, 7(9):2710.
[48] Bell D R, Cheng S Y, Salazar H, Ren P. Sci. Rep., 2017, 7:45812.
[49] Barducci A, Bussi G, Parrinello M. Phys. Rev. Lett., 2008, 100(2):020603.
[50] Tiwary P, Parrinello M. J. Phys. Chem. B, 2015, 119(3):736.
[51] Babin V, Roland C, Sagui C. J. Chem. Phys., 2008, 128(13):134101.
[52] Dama J F, Parrinello M, Voth G A. Phys. Rev. Lett., 2014, 112(24):240602.
[53] Branduardi D, Bussi G, Parrinello M. J. Chem. Theory Comput., 2012, 8(7):2247.
[54] Piana S, Laio A. J. Phys. Chem. B, 2007, 111(17):4553.
[55] Raiteri P, Laio A, Gervasio F L, Micheletti C, Parrinello M. J. Phys. Chem. B, 2006, 110(8):3533.
[56] Iannuzzi M, Laio A, Parrinello M. Phys. Rev. Lett., 2003, 90(23):238302.
[57] Ensing B, Vivo M D, Liu Z, Moore P, Klein M L. Acc. Chem. Res., 2006, 39(2):73.
[58] Masetti M, Cavalli A, Recanatini M, Gervasio F L. J. Phys. Chem. B, 2009, 113(14):4807.
[59] Söderhjelm P, Tribello G A, Parrinello M. Proc. Natl. Acad. Sci., 2012, 109(14):5170.
[60] Clark A J, Tiwary P, Borrelli K, Feng S, Miller E B, Abel R, Friesner R A, Berne B J. J. Chem. Theory Comput., 2016, 12(6):2990.
[61] Haldar S, Kührová P, Banáš P, Spiwok V, Šponer J, Hobza P, Otyepka M. J. Chem. Theory Comput., 2015, 11(8):3866.
[62] Bottaro S, Banáš P, Šponer J, Bussi G. J. Phys. Chem. Lett., 2016, 7(20):4032.
[63] Borkar A N, Vallurupalli P, Camilloni C, Kay L E, Vendruscolo M. Phys. Chem. Chem. Phys., 2017, 19(4):2797.
[64] Den Otter W K. J. Chem. Phys., 2000, 112(17):7283.
[65] Hénin J, Fiorin G, Chipot C, Klein M L. J. Chem. Theory Comput., 2010, 6(1):35.
[66] Laio A, Rodríguez-Fortea A, Gervasio F L, Ceccarelli M, Parrinello M. J. Phys. Chem. B, 2005, 109(14):6714.
[67] Lelièvre T, Rousset M, Stoltz G. Nonlinearity, 2008, 21(6):1155.
[68] Fu H, Shao X, Chipot C, Cai W. J. Chem. Theory Comput., 2016, 12(8):3506.
[69] Zheng L Q, Yang W. Proc. J. Chem. Theory Comput., 2012, 8(3):810.
[70] Lesage A, Lelièvre T, Stoltz G, Hénin J. J. Phys. Chem. B, 2017, 121(5):3676.
[71] Gumbart J C, Roux B, Chipot C. Protein:Ligand Standard Binding Free Energies:A Tutorial for Alchemical and Geo-Metrical Transformations.. http://www.ks.uiuc.edu/Training/Tutorials/namd/PLB/tutorial-protein-ligand.pdf
[72] Chipot C, Lelièvre T. SIAM J. Appl. Math., 2011, 71(5):1673.
[73] Minoukadeh K, Chipot C, Lelièvre T. J. Chem. Theory Comput., 2010, 6(4):1008.
[74] Alrachid H, Lelièvre T. SMAI J. Comput. Math., 2015, 1:55.
[75] Hénin J, Pohorille A, Chipot C. J. Am. Chem. Soc., 2005, 127(23):8487.
[76] Wang S H, Orabi E A, Baday S, Bernèche S, Lamoureux G. J. Am. Chem. Soc., 2012, 134(25):10419.
[77] Lee C T, Comer J, Herndon C, Leung N, Pavlova A, Swift R V, Tung C, Rowley C N, Amaro R E, Chipot C, Wang Y, Gumbart J C. J. Chem. Inf. Model., 2016, 56(4):721.
[78] Comer J, Schulten K, Chipot C. J. Chem. Theory Comput., 2017, 13(6):2523.
[79] Gumbart J C, Roux B, Chipot C. J. Chem. Theory Comput., 2013, 9(1):794.
[80] Lapelosa M. J. Chem. Theory Comput., 2017, 13(9):4514.
[81] Yonetani Y, Kono H. J. Phys. Chem. B, 2013, 117(25):7535.
[82] Akhshi P, Mosey N J, Wu G. Angew. Chem. Int. Ed., 2012, 51(12):2850.
[83] Kamath G, Baker G A. RSC Adv., 2013, 3:8197.
[84] Cai W S, Sun T T, Liu P, Chipot C, Shao X G. J. Phys. Chem. B, 2009, 113(22):7836.
[85] Liu P, Cai W S, Chipot C, Shao X G. J. Phys. Chem. Lett., 2010, 1(12):1776.
[86] 王腾(Wang T), 蔡文生(Cai W S), 邵学广(Shao X G). 化学进展(Progress in Chemistry), 2010, 22(5):803.
[87] Cai W S, Wang T, Liu Y Z, Liu P, Chipot C, Shao X G. Curr. Org. Chem., 2011, 15(6):839.
[88] Liu Y Z, Chipot C, Shao X, Cai W. J. Phys. Chem. C, 2011, 115(5):1851.
[89] Fu H H, Liu Y Z, Adrià F, Shao X G, Cai W S, Chipot C. J. Phys. Chem. B, 2014, 118(40):11747.
[90] Liu Y Z, Chipot C, Shao X G, Cai W S. RSC Adv., 2015, 5(71):57309.
[91] Liu Y Z, Chipot C, Shao X G, Cai W S. J. Phys. Chem. C, 2016, 120(11):6287.
[92] Wang S S, Zhao T F, Shao X G, Chipot C, Cai W S. J. Phys. Chem. C, 2016, 120(34):19479.
[93] Fu H H, Shao X, Chipot C, Cai W S. Chem. Sci., 2017, 8(7):5087.
[94] Rossa L, Mináry P, Zhu Z W, Tuckerman M E. J. Chem. Phys., 2002, 116(11):4389.
[95] Abrams C F, Vanden-Eijnden E. Chem. Phys. Lett., 2012, 547:114.
[96] Vashisth H, Maragliano L, Abrams C F. Biophys. J., 2012, 102(8):1979.
[97] Vashisth H, Neubig R R, Brooks C L. ACS Chem. Biol., 2013, 8(12):2778.
[98] Abrams C F, Vanden-Eijnden E. Proc. Natl. Acad. Sci., 2010, 107(11):4961.
[99] Alexis P S, Vanden-Eijnden E, Abrams C F. Chem. Sci., 2017, 8(2):1225.
[100] Maragliano L, Cottone G, Ciccotti G, Vanden-Eijnden E. J.Am.Chem.Soc., 2010, 132(3):1010.
[101] Dror R O, Mildorf T J, Hilger D, Manglik A, Borhani D W, Arlow D H, Philippsen A, Villanueva N, Yang Z, Lerch M T, Hubbell W L, Kobilka B K, Sunahara R K, Shaw D E. Science, 2015, 348(6241):1361.
[102] Yu T Q, Chen P Y, Chen M, Samanta A, Vanden-Eijnden E, Tuckerman M. J. Chem. Phys., 2014, 140(21):214109.
[103] Sterpone F, Bonella S, Meloni S. J. Phys. Chem. C, 2012, 116(37):19636.
[104] Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia R A, Parrinello M. Comput. Phys. Commun., 2009, 180(10):1961.
[105] Tribello G, Bonomi M, Branduardi D, Camilloni C, Bussi G. Comput. Phys. Commun., 2014, 185(2):604.
[106] Fiorin G, Klein M L, Hénin J. Mol. Phys., 2013, 111(22):3345.
[107] Plimpton S. J. Comput. Phys., 1995, 117(1):1.
[108] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kalé L, Schulten K. J. Comput. Chem., 2005, 26(16):1781.
[109] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E. SoftwareX, 2015, 1:19.
[110] Eastman P, Swails J, Chodera J D, McGibbon R T, Zhao Y, Beauchamp K A, Wang L, Simmonett A C, Harrigan M P, Stern C D, Wiewiora R P, Brooks B R, Pande V S. PLoS Comput. Biol., 2017, 13(7):e1005659.
[111] Peng X D, Zhang Y B, Chu H Y, Li G H. J. Comput. Chem., 2016, 37(6):614.
[112] Mones L, Bernstein N, Csányi G. J. Chem. Theory Comput., 2016, 12(10):5100.
[113] Chen M, Cuendet M A, Tuckerman M E. J. Chem. Phys., 2012, 137(2):024102.
[114] Awasthi S, Nair N N. J. Chem. Phys., 2017, 146(9):094108.
[115] Raiteri P, Bussi G, Cucinotta C S, Credi A, Stoddart J F, Parrinello M. Angew. Chem. Int. Ed. 2008, 47(19):3356.
[116] Moradi M, Babin V, Roland C, Sagui C. Nucleic Acids Res., 2013, 41(1):33
[117] Bottaro S, Palma F D, Bussi G. Nucleic Acids Res., 2014, 42(21):13306.
[118] Onsager L. Phys. Rev. 1938, 54(8):554.
[119] Zheng L Q, Chen M E, Yang W. Proc. Natl. Acad. Sci., 2008, 105(51):20227.
[120] Hansmann U H E. Chem. Phys. Lett., 1997, 281(1):140.
[121] Bussi G, Gervasio F L, Laio A, Parrinello M. J. Am. Chem. Soc., 2006, 128(41):13435.
[122] Yang Y I, Zhang J, Che X, Yang L, Gao Y Q. J. Chem. Phys., 2016, 144(9):094105.
[123] Galvelis R, Sugita Y. J. Chem. Theory Comput., 2017, 13(6):2489.
[124] Branduardi D, Gervasio F L, Parrinello M. J. Chem. Phys., 2007, 126(5):054103.
[125] E W N, Ren W Q, Vanden-Eijnden E. Phys. Rev. B, 2002, 66(5):052301.
[126] Warshel A, Levitt M. J. Mol. Biol., 1976, 103(2):227.
[127] van der Kamp M W, Mulholland A J. Biochemistry, 2013, 52(16):2708.
[128] Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M, Onufreiv A, Simmerling C, Wang B, Woods R J. Comput. Chem., 2005, 26(16):1668.
[1] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[2] 雷东升, 童慧敏, 张磊, 张星, 张胜利, 任罡. 胆固醇酯转移蛋白在胆固醇酯转移中的结构与功能[J]. 化学进展, 2014, 26(05): 879-888.
[3] 赵丽君, 雷鸣. 甲状腺结合前清蛋白的理论研究[J]. 化学进展, 2014, 26(01): 193-202.
[4] 常姗燕, 刘夫锋*. 三磷酸腺苷结合盒式转运体的分子模拟[J]. 化学进展, 2013, 25(07): 1208-1218.
[5] 陈景飞, 郝京诚. 表面活性剂溶液行为的粗粒化模拟[J]. 化学进展, 2012, (10): 1890-1896.
[6] 巫瑞波, 曹泽星*, 张颖凯*. 锌酶的计算模拟:挑战与最新进展[J]. 化学进展, 2012, 24(06): 1175-1184.
[7] 金海晓 严小军 朱鹏. PKA酶及其抑制剂balanol的计算化学*[J]. 化学进展, 2010, 22(05): 993-1001.
[8] 王腾 蔡文生 邵学广. 环糊精的理论计算*[J]. 化学进展, 2010, 22(05): 803-811.
[9] 郑燕升,莫倩,孟陆丽,程谦伟. 室温离子液体的分子动力学模拟[J]. 化学进展, 2009, 21(0708): 1427-1433.
[10] 邓平晔,张冬海,田亚峻,陈运法,丁辉. 自组装的分子动力学模拟[J]. 化学进展, 2007, 19(9): 1249-1257.
[11] 蔡文生,林翼,邵学广. 团簇研究中的原子间势函数*[J]. 化学进展, 2005, 17(04): 588-596.
阅读次数
全文


摘要

重要性采样方法与自由能计算