English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 314-324 DOI: 10.7536/PC171007 前一篇   

• 综述 •

葡萄糖制备5-羟甲基糠醛

冯云超, 左淼, 曾宪海*, 孙勇, 唐兴, 林鹿*   

  1. 厦门大学能源学院 福建省生物质清洁高值化技术工程研究中心 厦门市现代农业生物质高值化技术重点实验室 厦门 361102
  • 收稿日期:2017-10-12 修回日期:2017-11-15 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 曾宪海,xianhai.zeng@xmu.edu.cn;林鹿,lulin@xmu.edu.cn E-mail:xianhai.zeng@xmu.edu.cn;lulin@xmu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21506177,21676223)、福建省发改委重大产业化投资项目(No.2015489)、厦门大学校长基金(No.20720160077,20720160087,20720170062)、福建省自然科学基金项目(No.2016J01077,2015J05034)和福建省高校青年自然基金重点项目(No.JZ160398)资助

Preparation of 5-Hydroxymethylfurfural from Glucose

Yunchao Feng, Miao Zuo, Xianhai Zeng*, Yong Sun, Xing Tang, Lu Lin*   

  1. College of Energy, Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of High-Valued Conversion Technology of Agricultural Biomass, Xiamen University, Xiamen 361102, China
  • Received:2017-10-12 Revised:2017-11-15 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21506177, 21676223), the Fujian Provincial Development and Reform Commission, China(No. 2015489), the Fundamental Research Funds for the Central Universities(No.20720160077, 20720160087, 20720170062), the Natural Science Foundation of Fujian Province of China(No.2016J01077, 2015J05034), and the Education Department of Fujian Province(No. JZ160398).
5-羟甲基糠醛(HMF)作为一种重要且多用途的生物质基平台化合物,可被转化为多种高附加值化学品,如乙酰丙酸、2,5-二甲基呋喃、2,5-呋喃二甲酸、2,5-呋喃二甲醇、γ-戊内酯、5-氨基乙酰丙酸等,而这些化学品可进一步作为化石燃料替代品、燃料添加剂或作为聚合物单体或医药产品等进行应用。葡萄糖是由纤维素水解大量得到的六碳单糖,由葡萄糖制备HMF是生物质资源最大化利用的有效途径之一。本文通过对近几年HMF制备方法的概述,分别由催化剂、反应体系两方面进行分类总结葡萄糖基碳水化合物制备HMF的研究进展,并对其各个反应过程的催化活性、反应体系稳定性和应用前景进行了总结归纳。随后论述了用于HMF制备的多种溶剂体系(诸如单相体系、双相体系、离子液体和低共熔溶剂体系)。最后,结合目前葡萄糖制备HMF过程中存在的问题,对未来工作的研究重点进行了展望,以期为相关研究者提供参考。
Biomass derived 5-hydroxymethylfurfural(HMF) has emerged as an important and versatile platform compound containing furan, hydroxymethyl and aldehyde groups to realize the goal for production of several high value added products, such as levulinic acid, 2,5-dimethylfuran, 2,5-furan dicarboxylic acid, 2,5-furan dimethanol, γ-valerolalactone, 5-aminolevulinic acid, which could be served as biofuels, fuel additives, bulk polymer monomers, chemicals and pharmaceuticals. Moreover, glucose is a bulk six-carbon monosaccharide from cellulose by hydrolyzation, and the preparation of HMF from glucose is one of the most effective and promising routes to maximize the utilization of sustainable biomass resources. In this review, focus is primarily put on the recent advances of systematically characterization on catalysts of HMF production from glucose for its activity, stability and application prospect. Then, the various solvent systems used in HMF production in recent years, such as single-phase solvents, biphasic solvents, ionic liquids and deep eutectic solvents, are reviewed and discussed. Finally, the future research directions such as an innovative catalyst, deep eutectic sol-vents are proposed, which might be helpful for researchers.
Contents
1 Introduction
2 Catalysts
2.1 Homogeneous catalysts
2.2 Heterogeneous catalysts
3 Reaction solvents
3.1 Single-phase solvents
3.2 Biphasic solvents
3.3 Ionic liquids
3.4 Deep eutectic solvents
4 Conclusion

中图分类号: 

()
[1] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107(6):2411.
[2] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9):4044.
[3] Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Chem. Rev., 2015, 115(21):11559.
[4] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12(9):1493.
[5] Wang J J, Xi J X, Wang Y Q. Green Chem., 2015, 17(2):737.
[6] Kiermayer J. Chem. Ztg, 1895, 19:1003.
[7] Düll G. Chem. Ztg, 1895, 19:216.
[8] Van Enenstein W, Blanksma J. Chem. Weeklad, 1909, 6:717.
[9] Mascal M, Nikitin E B. Angew. Chem. Int. Ed., 2008, 47(41):7924.
[10] De S, Dutta S, Saha B. ChemSusChem, 2012, 5(9):1826.
[11] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447(7147):982.
[12] Rosatella A A, Simeonov S P, Frade R F, Afonso C A. Green Chem., 2011, 13(4):754.
[13] Ståhlberg T, Fu W J, Woodley J M, Riisager A. ChemSusChem, 2011, 4(4):451.
[14] Wang H L, Kong Q Q, Wang Y X, Deng T S, Chen C M, Hou X L, Zhu Y L. ChemCatChem, 2014, 6(3):728.
[15] Hu Z, Liu B, Zhang Z H, Chen L Q. Ind. Crops Prod., 2013, 50:264.
[16] Yang Y, Hu C W, Abu-Omar M M. Green Chem., 2012, 14(2):509.
[17] Choudhary V, Mushrif S H, Ho C, Anderko A, Nikolakis V, Marinkovic N S, Frenkel A I, Sandler S I, Vlachos D G. J. Am. Chem. Soc., 2013, 135(10):3997.
[18] Loerbroks C, van Rijn J, Ruby M P, Tong Q, Schüth F, Thiel W. Chem. -Eur. J., 2014, 20(38):12298.
[19] Bhaumik P, Dhepe P L. Catal. Rev., 2016, 58(1):36.
[20] Yang Y, Hu C W, Abu-Omar M M. J. Mol. Catal. A:Chem., 2013, 376:98.
[21] Sarwono A, Man Z, Muhammad N, Khan A S, Hamzah W S W, Rahim A H A, Ullah Z, Wilfred C D. Ultrason. Sonochem., 2017, 37:310.
[22] Aida T M, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K. J. Supercrit. Fluids, 2007, 40(3):381.
[23] Qi X H, Watanabe M, Aida T M, Smith R L. Catal. Commun., 2008, 9(13):2244.
[24] Qi J, Lv X Y. Chin. J. Chem. Eng., 2008, 16(6):890.
[25] Cole-Hamilton D J. Science, 2003, 299(5613):1702.
[26] Li M H, Li W Z, Lu Y J, Jameel H, Chang H M, Ma L L. RSC Adv., 2017, 7(24):14330.
[27] Pagan-Torres Y J, Wang T F, Gallo J M R, Shanks B H, Dumesic J A. ACS Catal., 2012, 2(6):930.
[28] Eminov S, Brandt A, Wilton-Ely J D, Hallett J P. PLoS One, 2016, 11(10):e0163835.
[29] Teng J J, Ma H, Wang F R, Wang L F, Li X H. Bioresources, 2016, 11(1):2152.
[30] Xu Z L, Wang X Y, Shen M Y, Du C H. Chem. Pap., 2016, 70(12):1649.
[31] Zhou J X, Xia Z, Huang T Y, Yan P F, Xu W J, Xu Z W, Wang J J, Zhang Z C. Green Chem., 2015, 17(8):4206.
[32] Li J J, Ma Y B, Wang L, Song Z, Li H P, Wang T F, Li H Y, Eli W. Catalysts, 2015, 6(1):1.
[33] Di Serio M, Tesser R, Lu P M, Santacesaria E. Energy Fuels, 2007, 22(1):207.
[34] Nasirudeen M B, Hailes H C, Evans J R G. Curr. Org. Synth., 2017, 14(4):596.
[35] Yan H P, Yang Y, Tong D M, Xiang X, Hu C W. Catal. Commun., 2009, 10(11):1558.
[36] 于世涛(Yu S T), 刘福胜(Liu F S). 固体酸与精细化工(Solid Acid and Fine Chemical Industry), 北京:化学工业出版社(Beijing:Chemical Industry Press), 2006. 23.
[37] Wang Y P, Liu Y H, Yang L, Ruan R, Wen P W, Wan Y Q. Synth. React. Inorg. Met.-Org. Chem., 2016, 46(2):177.
[38] García-Sancho C, Fúnez-Núñez I, Moreno-Tost R, Santamaría-González J, Pérez-Inestrosa E, Fierro J L G, Maireles-Torres P. Appl. Catal. B-Environ., 2017, 206:617.
[39] Jiao H F, Zhao X L, Lv C X, Wang Y J, Yang D J, Li Z H, Yao X D. Sci. Rep., 2016, 6.
[40] Martínez J J, Silva D F, Aguilera E X, Rojas H A, Brijaldo M H, Passos F B, Romanelli G P. Catal. Lett., 2017, 147(7):1765.
[41] Guo J, Zhu S H, Cen Y L, Qin Z F, Wang J G, Fan W B. Appl. Catal. B-Environ., 2017, 200:611.
[42] Yue C C, Li G N, Pidko E A, Wiesfeld J J, Rigutto M, Hensen E J. ChemSusChem, 2016, 9(17):2421.
[43] Su Y, Chang G G, Zhang Z G, Xing H B, Su B G, Yang Q W, Ren Q L, Yang Y W, Bao Z B. AIChE J., 2016, 62(12):4403.
[44] Yabushita M, Li P, Islamoglu T, Kobayashi H, Fukuoka A, Farha O K, Katz A. Ind. Eng. Chem. Res., 2017, 56(25):7141.
[45] Chen D W, Liang F B, Feng D X, Xian M, Zhang H B, Liu H Z, Du F L. Chem. Eng. J., 2016, 300:177.
[46] Li W Z, Zhang T W, Xin H S, Su M X, Ma L L, Jameel H, Chang H M, Pei G. RSC Adv., 2017, 7(44):27682.
[47] Thombal R S, Jadhav V H. Appl. Catal., A, 2015, 499:213.
[48] Jiménez-Morales I, Santamaría-González J, Jiménez-López A, Maireles-Torres P. Fuel, 2014, 118:265.
[49] Jiménez-Morales I, Moreno-Recio M, Santamaría-González J, Maireles-Torres P, Jimenez-Lopez A. Appl. Catal. B-Environ., 2015, 164:70.
[50] Xu Q, Zhu Z, Tian Y K, Deng J, Shi J, Fu Y. Bioresources, 2013, 9(1):303.
[51] Moreno-Recio M, Santamaría-González J, Maireles-Torres P. Chem. Eng. J., 2016, 303:22.
[52] Wang P, Ren L H, Lu Q Y, Huang Y B. Chem. Eng. Commun., 2016, 203(11):1507.
[53] Liu H, Wang H W, Li Y, Yang W, Song C H, Li H M, Zhu W S, Jiang W. RSC Adv., 2015, 5(12):9290.
[54] Ravasco J M J M, Coelho J A S, Simeonov S P, Afonso C A M. RSC Adv., 2017, 7(13):7555.
[55] Lu Y M, Li H, He J, Liu Y X, Wu Z B, Hu D Y, Yang S. RSC Adv., 2016, 6(16):12782.
[56] Liu B, Ba C, Jin M M, Zhang Z H. Ind. Crops Prod., 2015, 76:781.
[57] Wang J J, Ren J W, Liu X H, Xi J X, Xia Q N, Zu Y H, Lu G Z, Wang Y Q. Green Chem., 2012, 14(9):2506.
[58] Guo X Q, Zhu C H, Guo F. Bioresources, 2016, 11(1):2457.
[59] Gascon J, Corma A, Kapteijn F, Llabrés i Xamena F X. ACS Catal., 2013, 4(2):361.
[60] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38(5):1450.
[61] Valvekens P, Vermoortele F, De Vos D. Catal. Sci. Technol., 2013, 3(6):1435.
[62] Herbst A, Janiak C. New J. Chem., 2016, 40(9):7958.
[63] Mondloch J E, Bury W, Fairen-Jimenez D, Kwon S, DeMarco E J, Weston M H, Sarjeant A A, Nguyen S T, Stair P C, Snurr R Q, Farha O K, Hupp J T. J. Am. Chem. Soc., 2013, 135(28):10294.
[64] Kruse A, Dinjus E. J. Supercrit. Fluids, 2007, 39(3):362.
[65] Shuai L, Luterbacher J. ChemSusChem, 2016, 9(2):133.
[66] Kimura H, Nakahara M, Matubayasi N. J. Phys. Chem. A, 2011, 115(48):14013.
[67] Vasudevan V, Mushrif S H. RSC Adv., 2015, 5(27):20756.
[68] Sun J K, Yuan X D, Shen Y, Yi Y X, Wang B, Xu F, Sun R C. Ind. Crops Prod., 2015, 70:266.
[69] Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84(5):339.
[70] Gürbüz E I, Wettstein D S G, Dumesic P J A. ChemSusChem, 2012, 5(2):383.
[71] Román-Leshkov Y, Dumesic J A. Top. Catal., 2009, 52(3):297.
[72] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131(5):1979.
[73] Wasserscheid P, Keim W. Angew. Chem. Int. Ed., 2000, 39(21):3772.
[74] Rogers R D, Seddon K R. Science, 2003, 302(5646):792.
[75] 胡磊(Hu L), 孙勇(Sun Y), 林鹿(Lin L). 化学进展(Progress in Chemistry), 2012, 24(4):483.
[76] Zhao H B, Holladay J E, Brown H, Zhang Z C. Science, 2007, 316(5831):1597.
[77] Li C Z, Zhang Z H, Zhao Z B K. Tetrahedron Lett., 2009, 50(38):5403.
[78] D'Anna F, Marullo S, Vitale P, Rizzo C, Meo P L, Noto R. Appl. Catal. A, 2014, 482(28):287.
[79] Tang X, Zuo M, Li Z, Liu H, Xiong C X, Zeng X H, Sun Y, Hu L, Liu S J, Lei T Z, Lin L. ChemSusChem, 2017, 10(13):2696.
[80] Paiva A, Craveiro R, Aroso I, Martins M, Reis R L, Duarte A R C. ACS Sustain Chem. Eng., 2014, 2(5):1063.
[81] Matsumiya H, Hara T. Biomass Bioenerg., 2015, 72:227.
[82] Zuo M, Le K, Li Z, Jiang Y T, Zeng X H, Tang X, Sun Y, Lin L. Ind. Crops Prod., 2017, 99:1.
[83] Liu F, Audemar M, Vigier K D O, Cartigny D, Clacens J M, Gomes M F C, Pádua A A, De Campo F, Jérôme F. Green Chem., 2013, 15(11):3205.
[84] Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B. Green Chem., 2009, 11(12):1948.
[85] Yang J, De Oliveira Vigier K, Gu Y L, Jerome F. ChemSusChem, 2015, 8(2):269.
[1] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[2] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[3] 刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展, 2021, 33(11): 2128-2137.
[4] 尹钰, 马春慧, 李伟, 刘守新. 葡萄糖制备5-羟甲基糠醛的溶剂体系及转化机理[J]. 化学进展, 2021, 33(10): 1856-1873.
[5] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[6] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[7] 方莉, 贺进禄. 无酶葡萄糖传感器[J]. 化学进展, 2015, 27(5): 585-593.
[8] 张宇琪, 俞计成, 沈群东, 顾臻. 随葡萄糖响应的合成类闭路胰岛素递释系统[J]. 化学进展, 2015, 27(1): 11-26.
[9] 李京, 谢小丽, 王佳佳, 王晓敏, 李静, 王鹏. 戈谢病的药物分子伴侣[J]. 化学进展, 2014, 26(05): 889-897.
[10] 周理龙, 吴廷华*, 吴瑛*. 纤维素在离子液体中的降解转化[J]. 化学进展, 2012, 24(08): 1533-1543.
[11] 胡磊, 孙勇, 林鹿. 离子液体介导制备5-羟甲基糠醛[J]. 化学进展, 2012, 24(04): 483-491.
[12] 石文韬, 邸静, 马占芳. 电化学葡萄糖传感器[J]. 化学进展, 2012, 24(04): 568-576.
[13] 胡磊, 孙勇, 林鹿. 生物质转化为液体燃料2,5-二甲基呋喃 的途径与机理[J]. 化学进展, 2011, 23(10): 2079-2084.
[14] 李艳 魏作君 陈传杰 刘迎新. 碳水化合物降解为5-羟甲基糠醛的研究*[J]. 化学进展, 2010, 22(08): 1603-1609.
[15] 黄世勇,王富丽,潘丽霞. 果糖脱水制备5-羟甲基糠醛*[J]. 化学进展, 2009, 21(0708): 1442-1449.
阅读次数
全文


摘要

葡萄糖制备5-羟甲基糠醛