English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 710-718 DOI: 10.7536/PC171001 前一篇   后一篇

• 综述 •

基于氢键作用的内酯开环聚合非金属有机催化剂

杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*   

  1. 浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310027
  • 收稿日期:2017-10-09 修回日期:2017-11-22 出版日期:2018-06-15 发布日期:2018-03-07
  • 通讯作者: 介素云,e-mail:jiesy@zju.edu.cn;潘鹏举,e-mail:panpengju@zju.edu.cn E-mail:jiesy@zju.edu.cn;panpengju@zju.edu.cn
  • 基金资助:
    国家重点研发计划(No.2016YFC1100801)资助

Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones

Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*   

  1. State Key Laboratory of Chemical Engineering, College of Chemical Engineering and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2017-10-09 Revised:2017-11-22 Online:2018-06-15 Published:2018-03-07
  • Supported by:
    The work was supported by the National Key R & D Program of China(No. 2016YFC1100801).
脂肪族聚酯具有生物可降解、生物相容及环境友好等优良性能,其已广泛应用于包装、农用地膜、生物医用材料等领域。与缩聚反应相比,内酯开环聚合反应条件温和,无小分子产生,容易制得高分子量、窄分子量分布的聚合物。目前,脂肪族聚酯主要通过配位聚合反应制备,通常使用金属配合物作为催化剂,所得聚合物中含有少量无法除去的金属离子,这限制了其在医用材料等领域的应用。与金属催化剂相比,非金属有机催化剂具有价廉、易制备、低毒等特点,因此非金属有机催化剂催化的内酯开环聚合反应受到了研究者的广泛关注。本文根据非金属有机催化剂作用机理的不同,从氢键作用机理出发,综述近年来基于氢键作用的非金属有机催化剂在内酯开环聚合领域的研究进展。
Aliphatic polyesters are a class of biodegradable, biocompatible, and environmentally friendly polymers, which have been widely used in many fields, such as packaging, agricultural film, biomedical materials, etc. In comparison with the polycondensation reaction, the ring-opening polymerization (ROP) of lactones could be conducted in mild conditions with no small-molecular byproducts formed in the polymerization process. In addition, ROP of lactones is suitable to synthesize the aliphatic polyesters with high molecular weight and narrow molecular weight distribution. At present, the aliphatic polyesters are usually synthesized by the coordination polymerization with the metal complexes as catalysts. The as-prepared polymers inevitably contain a small amount of metal ions that are difficult to be removed completely, which limits the applications of aliphatic polyesters in the biomedical fields. Due to the low cost, ease of preparation, and low toxicity of non-metallic organocatalysts, the ROP of lactones catalyzed by non-metallic organocatalysts has drawn much attention in recent years. According to the catalytic mechanisms, this paper will focus on the non-metallic organocatalysts with the hydrogen-bonding interactions and review the recent research progress on the hydrogen bonding-based non-metallic organocatalysts used for ROP of lactones.
Contents
1 Introduction
2 Monofunctional hydrogen-bonding catalysts
2.1 DBU
2.2 MTBD
2.3 Phosphazenes
3 Bifunctional hydrogen-bonding catalysts
3.1 4-Dimethylaminopyridine
3.2 Thiourea-amine catalyst
3.3 1,5,7-Triazabicyclo[4.4.0] dec-5-ene
3.4 Other bifunctional catalysts
4 Combined catalyst systems
4.1 Combined neutral catalyst systems
4.2 Combined ionic catalyst systems
5 Conclusion

中图分类号: 

()
[1] Gross R A, Kalra B. Science, 2002, 297(5582):803.
[2] Albertsson A C, Varma I K. Biomacromolecules, 2003, 4(6):1466.
[3] Mecking S. Angew. Chem. Int. Ed., 2004, 43(9):1078.
[4] Luckachan G E, Pillai C K S. J. Polym. Environ., 2011, 19(3):637.
[5] Zhu Y Q, Romain C, Williams C K. Nature, 2016, 540(7633):354.
[6] Tong R. Ind. Eng. Chem. Res., 2017, 56(15):4207.
[7] Lecomte P, Jerome C. Adv. Polym. Sci., 2012, 245:173.
[8] Nuyken O, Pask S D. Polymers, 2013, 5(2):361.
[9] Dutta S, Hung W C, Huang B H, Lin C C. Adv. Polym. Sci., 2012, 245:219.
[10] Han L, Shan G, Bao Y, Pan P. J. Phys. Chem. B, 2015, 119(44):14270.
[11] Li J, Deng Y, Jie S, Li B G. J. Organomet. Chem., 2015, 797:76.
[12] Wang R B, Zhang J W, Yin Q, Xu Y X, Cheng J J, Tong R. Angew. Chem. Int. Ed., 2016, 55(42):13010.
[13] Rosen T, Goldberg I, Venditto V, Kol M. J. Am. Chem. Soc., 2016, 138(37):12041.
[14] Rosen T, Goldberg I, Navarra W, Venditto V, Kol M. Chem. Sci., 2017, 8(8):5476.
[15] Bakewell C, Cao T P A, Le Goff X F, Long N J, Auffrant A, Williams C K. Organometallics, 2013, 32(5):1475.
[16] Li L, Liu B, Liu D T, Wu C J, Li S H, Liu B, Cui D M. Organometallics, 2014, 33(22):6474.
[17] Dove A P. ACS Macro Lett., 2012, 1(12):1409.
[18] Jeffrey G A. An Introduction to Hydrogen Bonding. Oxford University Press, 1997.
[19] Gilli G, Gilli P. The Nature of the Hydrogen Bond. Oxford University Press, 2009.
[20] Kiesewetter M K, Shin E J, Hedrick J L, Waymouth R M. Macromolecules, 2010, 43(5):2093.
[21] Ottou W N, Sardon H, Mecerreyes D, Vignolle J, Taton D. Prog. Polym. Sci., 2016, 56:64.
[22] Connor E F, Nyce G W, Myers M, Mock A, Hedrick J L. J. Am. Chem. Soc., 2002, 124(6):914.
[23] Kamber N E, Jeong W, Gonzalez S, Hedrick J L, Waymouth R M. Macromolecules, 2009, 42(5):1634.
[24] Myers M, Connor E F, Glauser T, Mock A, Nyce G, Hedrick J L. J. Polym. Sci. Part A:Polym. Chem., 2002, 40(7):844.
[25] Lohmeijer B G G, Pratt R C, Leibfarth F, Logan J W, Long D A, Dove A P, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(25):8574.
[26] Carafa M, Mesto E, Quaranta E. Eur. J. Org. Chem., 2011, (13):2458.
[27] Brown H A, De Crisci A G, Hedrick J L, Waymouth R M. ACS Macro Lett., 2012, 1(9):1113.
[28] Sherck N J, Kim H C, Won Y Y. Macromolecules, 2016, 49(13):4699.
[29] Kaljurand I, Kutt A, Soovali L, Rodima T, Maemets V, Leito I, Koppel I A. J. Org. Chem., 2005, 70(3):1019.
[30] Zhang L, Nederberg F, Pratt R C, Waymouth R M, Hedrick J L, Wade C G. Macromolecules, 2007, 40(12):4154.
[31] Zhang L, Nederberg F, Messman J, Pratt R C, Hedrick J L, Wade C G. J. Am. Chem. Soc., 2007, 129(42):12610.
[32] Helou M, Miserque O, Brusson J M, Carpentier J F, Guillaume S M. Chem. Eur. J., 2010, 16(46):13805.
[33] Yang H J, Yan M Q, Pispas S, Zhang G Z. Macromol. Chem. Phys., 2011, 212(23):2589.
[34] Memeger W, Campbell G C, Davidson F. Macromolecules, 1996, 29(20):6475.
[35] Illy N, Boileau S, Buchmann W, Penelle J, Barbier V. Macromolecules, 2010, 43(21):8782.
[36] Hong M, Chen E Y X. Angew. Chem. Int. Ed., 2016, 55(13):4188.
[37] Jaffredo C G, Carpentier J F, Guillaume S M. Macromol. Rapid Comm., 2012, 33(22):1938.
[38] Nederberg F, Connor E F, Moller M, Glauser T, Hedrick J L. Angew. Chem. Int. Ed., 2001, 40(14):2712.
[39] Bonduelle C, Martin-Vaca B, Cossio F P, Bourissou D. Chem. Eur. J., 2008, 14(17):5304.
[40] Dove A P, Pratt R C, Lohmeijer B G G, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2005, 127(40):13798.
[41] Simon L, Goodman J M. J. Org. Chem., 2007, 72(25):9656.
[42] Chuma A, Horn H W, Swope W C, Pratt R C, Zhang L, Lohmeijer B G G, Wade C G, Waymouth R M, Hedrick J L, Rice J E. J. Am. Chem. Soc., 2008, 130(21):6749.
[43] Pratt R C, Lohmeijer B G G, Long D A, Waymouth R M, Hedrick J L. J. Am. Chem. Soc., 2006, 128(14):4556.
[44] Kiesewetter M K, Scholten M D, Kirn N, Weber R L, Hedrick J L, Waymouth R M. J. Org. Chem., 2009, 74(24):9490.
[45] Kricheldorf H R, Dunsing R. Makromol. Chem., 1986, 187(7):1611.
[46] Susperregui N, Delcroix D, Martin-Vaca B, Bourissou D, Maron L. J. Org. Chem., 2010, 75(19):6581.
[47] Delcroix D, Couffin A, Susperregui N, Navarro C, Maron L, Martin-Vaca B, Bourissou D. Polym. Chem., 2011, 2(10):2249.
[48] Rostami A, Sadeh E, Ahmadi S. J. Polym. Sci. Part A:Polym. Chem., 2017, 55(15):2483.
[49] Specklin D, Hild F, Chen L, Thévenin L, Munch M, Dumas F, Le Bideau F, Dagorne S. ChemCatChem, 2017, 9:1.
[50] Coady D J, Engler A C, Horn H W, Bajjuri K M, Fukushima K, Jones G O, Nelson A, Rice J E, Hedrick J L. ACS Macro Lett., 2012, 1(1):19.
[51] Kazakov O I, Kiesewetter M K. Macromolecules, 2015, 48(17):6121.
[52] Spink S S, Kazakov O I, Kiesewetter E T, Kiesewetter M K. Macromolecules, 2015, 48(17):6127.
[53] Fastnacht K V, Spink S S, Dharmaratne N U, Pothupitiya J U, Datta P P, Kiesewetter E T, Kiesewetter M K. ACS Macro Lett., 2016, 5(8):982.
[54] Dharmaratne N U, Pothupitiya J U, Bannin T J, Kazakov O I, Kiesewetter M K. ACS Macro Lett., 2017, 6(4):421.
[55] Coulembier O, Sanders D R, Nelson A, Hollenbeck A N, Horn H W, Rice J E, Fujiwara M, Dubois P, Hedrick J L. Angew. Chem. Int. Ed., 2009, 48(28):5170.
[56] Alba A, Schopp A, Delgado A P D S, Cherif-Cheikh R, Martin-Vaca B, Bourissou D. J. Polym. Sci., Part A:Polym. Chem., 2010, 48(4):959.
[57] Liu J, Chen C, Li Z, Wu W, Zhi X, Zhang Q, Wu H, Wang X, Cui S, Guo K. Polym. Chem., 2015, 6(20):3754.
[58] Nickerson D M, Angeles V V, Auvil T J, So S S, Mattson A E. Chem. Commun., 2013, 49(39):4289.
[59] Xu S, Sun H, Liu J, Xu J, Pan X, Dong H, Liu Y, Li Z, Guo K. Polym. Chem., 2016, 7(44):6843.
[60] Makiguchi K, Kikuchi S, Yanai K, Ogasawara Y, Sato, S I, Satoh T, Kakuchi T. J. Polym. Sci., Part A:Polym. Chem., 2014, 52(7):1047.
[61] Wang X, Cui S D, Li Z J, Kan S L, Zhang Q G, Zhao C X, Wu H, Liu J J, Wu W Z, Guo K. Polym. Chem., 2014, 5(20):6051.
[62] Wang X, Liu J Q, Xu S Q, Xu J X, Pan X F, Liu J J, Cui S D, Li Z J, Guo K. Polym. Chem., 2016, 7(41):6297.
[63] Zhang D W, Jardel D, Peruch F, Calin N, Dufaud V, Dutasta J P, Martinez A, Bibal B. Eur. J. Org. Chem., 2016, (8):1619.
[64] Zhang X Y, Jones G O, Hedrick J L, Waymouth R M. Nat. Chem., 2016, 8(11):1047.
[65] Lin B H, Waymouth R M. J. Am. Chem. Soc., 2017, 139(4):1645.
[1] 秦国富, 刘一寰, 尹帆, 胡欣, 朱宁, 郭凯. 开环聚合接枝改性木质素[J]. 化学进展, 2020, 32(10): 1547-1556.
[2] 高晗, 徐军, 胡欣, 朱宁, 郭凯. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645.
[3] 郑柳春, 李春成*, 肖耀南, 张博, 王召栋. 可生物降解抗污材料[J]. 化学进展, 2017, 29(8): 824-832.
[4] 许茸, 陈春霞*. 有机小分子催化ε-己内酯开环聚合反应[J]. 化学进展, 2012, 24(08): 1519-1525.
[5] 徐莹莹, 李钊, Maxim Borzov, 聂万丽*. 空间受阻型Lewis酸碱对在小分子活化中的应用[J]. 化学进展, 2012, 24(08): 1526-1532.
[6] 黄翠英, 李阳, 王长生*. 准确快速计算含多肽酰胺和核酸碱基的氢键复合物的氢键强度和氢键作用势能曲线[J]. 化学进展, 2012, 24(06): 1214-1226.
[7] 李光, 白如科. 叠氮聚合物的合成[J]. 化学进展, 2011, 23(8): 1692-1699.
[8] 李启蒸, 张国艺, 袁聪, 魏柳荷, 马志. 聚烯烃/聚酯(聚醚)共聚物的合成及其应用[J]. 化学进展, 2011, 23(6): 1174-1180.
[9] 周莅霖 袁金颖 蔡志楠 洪啸吟. 活性开环聚合与可控自由基聚合机理转换合成精细结构共聚物*[J]. 化学进展, 2010, 22(09): 1799-1807.
[10] 蒋波 詹晓力 易玲敏 张晓东 许敏 孙立. 六甲基环三硅氧烷(D3)阴离子开环聚合机理与动力学研究[J]. 化学进展, 2010, 22(06): 1169-1176.
[11] 于翠萍,李希,牛俊峰,沈之荃. 三亚甲基环碳酸酯及2,2-二甲基三亚甲基环碳酸酯开环均聚合*[J]. 化学进展, 2007, 19(06): 959-972.
[12] 张治国,尹红. 环氧乙烷环氧丙烷开环聚合反应动力学研究*[J]. 化学进展, 2007, 19(04): 575-582.
[13] 刘继延,张黎明. 用于环酯单体开环聚合的无金属引发/催化体系*[J]. 化学进展, 2007, 19(0203): 350-355.
[14] 张治国,尹红. 环氧乙烷和环氧丙烷开环聚合*[J]. 化学进展, 2007, 19(01): 145-152.
[15] 于翠萍,李 ,希,沈之荃. 丙交酯开环均聚合*[J]. 化学进展, 2007, 19(01): 136-144.
阅读次数
全文


摘要