English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 166-178 DOI: 10.7536/PC170910 前一篇   后一篇

• 综述 •

嵌段共聚物三维软受限自组装

张艳1,2, 刘雪杰2, 闫南2, 胡跃鑫1*, 李海英1*, 朱雨田2*   

  1. 1. 辽宁石油化工大学化学与材料科学学院 抚顺 113001;
    2. 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
  • 收稿日期:2017-09-12 修回日期:2017-11-02 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 胡跃鑫,yxhu1981@163.com;李海英,haiying.li@hotmail.com;朱雨田,ytzhu@ciac.ac.cn E-mail:yxhu1981@163.com;haiying.li@hotmail.com;ytzhu@ciac.ac.cn
  • 基金资助:
    辽宁省教育厅科学研究一般项目(No.L2016001)、辽宁石油化工大学国家级科研项目培育基金项目(No.2016PY-004)和辽宁省博士科研启动基金指导计划项目(No.20170520284)资助

Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space

Yan Zhang1,2, Xuejie Liu2, Nan Yan2, Yuexin Hu1*, Haiying Li1*, Yutian Zhu2*   

  1. 1. School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, China;
    2. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2017-09-12 Revised:2017-11-02 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the Science Project of Liaoning Province Education Office(No. L2016001), the Scientific Research Cultivation Fund of LSHU (No.2016PY-004), and the Doctoral Scientific Research Foundation of Liaoning Province(No.20170520284).
嵌段共聚物在三维软受限条件下能够组装形成结构有序的聚合物胶束,其在催化、电子器件、光学传感等领域有广泛的应用价值,已经引起了广大科研工作者的关注。众所周知,嵌段共聚物自身性质及组装体内部结构和外部形状都会显著影响嵌段共聚物组装体性质及应用。本文简述了近年来嵌段共聚物三维软受限自组装的方法,分析了影响嵌段共聚物组装结构的内在和外在因素,内在因素主要指嵌段共聚物自身性质,包括嵌段共聚物种类、分子量及嵌段比;外在因素主要包括受限空间尺寸、界面性质、热或溶剂退火等。本文讨论了无机纳米粒子与嵌段共聚物三维软受限共组装,探讨了纳米粒子引入对组装结构影响及其在嵌段共聚物组装体中的分布及排列规律,以及组装结构的潜在应用。最后还讨论了目前嵌段共聚物三维软受限自组装存在的问题,同时对未来的发展方向进行了展望。
Under the three-dimensional(3D) confinement, block copolymers(BCPs) can self-assemble into various well-ordered nanostructures, which have versatile applications in the fields of catalyst carrier, electronics, optical sensor, and so on. It is known that the nature of the BCPs as well as the internal nanostructures and the external shapes of the self-assembled materials significantly influence their properties and applications. This review introduces the recent progress in the self-assembly methods for the 3D confined self-assembly of block copolymers. The internal and external factors that affect the self-assembled structures of BCPs are also summarized. The internal factors mainly refer to the nature of BCPs, including the block type, molecular weight and block volume fraction of different blocks. The external factors include the size of confined space, the oil/water interfacial interaction, thermal or solvent annealing treatment, and so on. Moreover, the co-assembly of BCPs and inorganic nanoparticles(NPs) under 3D soft confinement is also reviewed. The morphological transition after incorporating NPs and the controllable distribution and localization of NPs within BCP matrix, as well as the potential applications of the resulting hybrid structures are discussed. Finally, open questions on this issue are discussed and prospects of this field are described.
Contents
1 Introduction
2 Self-assembly of BCPs under 3D soft confinement
2.1 Overview of the methods of the 3D soft confined self-assembly
2.2 Factors affecting the self-assembly structures
2.3 Other methods for tuning the self-assembly structures
3 Co-assembly of BCPs and NPs under 3D soft confinement
3.1 Morphological transition induced by NPs
3.2 Controllable distribution and localization of NPs in BCP matrix
4 Applications of the 3D soft confined assembly of BCPs
5 Conclusion

中图分类号: 

()
[1] Bockstaller M R, Thomas E L. J. Phys. Chem. B, 2003, 107:10017.
[2] Karimi M, Zangabad P S, Ghasemi A, Amiri M, Bahrami M, Malekzad H, Asl H G, Mandieh Z, Bozorgomid M, Ghasemi A, Boyuk M R R T, Hamblin M R. ACS Appl. Mater. Interfaces, 2016, 8:21107.
[3] Ikkala O, ten Brinke G. Science, 2002, 295:2407.
[4] Liu S, Xu T. Macromolecules, 2016, 49:6075.
[5] Lee J, Ku K H, Kim M, Shin J M, Han J, Park C H, Yi G R, Jang S G, Kim B J. Adv. Mater., 2017, 29(29):1700608.
[6] Park M K, Jun S, Kim I, Jin S M, Kim J G, Shin T J, Lee E. Adv. Funct. Mater., 2015, 25:4570.
[7] Yan N, Zhu Y T, Jiang W. J. Phys. Chem. B, 2016, 120:12023.
[8] Higuchi T, Motoyoshi K, Sugimori H, Jinnai H, Yabu H, Shimomura M. Macromol. Rapid Commun., 2010, 31:1773.
[9] Deng R H, Liang F X, Li W K, Yang Z Z, Zhu J T. Macromolecules, 2013, 46:7012.
[10] Yan N, Yang X P, Zhu Y T, Xu J P, Sheng Y P. Macromol. Chem. Phys., 2012, 213:2261.
[11] Sheng Y P, An J, Zhu Y T. Chem. Phys., 2015, 452:46.
[12] Xu J P, Wang K, Li J Y, Zhou H M, Xie X L, Zhu J T. Macromolecules, 2015, 48:2628.
[13] Bates F S, Fredrickson G H. Phys. Today, 1999, 52:32.
[14] Matsushita Y, Suzuki J. Macromolecules, 1998, 31:2378.
[15] Lee B, Lo C T, Seifert S, Rago N L D, Winans R E, Thiyagarajan P. Macromolecules, 2007, 40:4235.
[16] Lo C T, Lee B, Pol V G, Rago N L D, Seifert S, Winans R E, Thiyagarajan P. Macromolecules, 2007, 40:8302.
[17] van Hest J C M, Delnoye D A P, Baars M W P L, van Genderen M H P, Meijer E W. Science, 1995, 268:1592.
[18] Zhang L F, Eisenberg A. Science, 1995, 268:1728.
[19] Mai Y Y, Eisenberg A. Chem. Soc. Rev., 2012, 41:5969.
[20] Han Y Y, Yu H Z, Du H B, Jiang W. J. Am. Chem. Soc., 2010, 132:1144.
[21] He X H, Schmid F. Macromolecules, 2006, 39:2654.
[22] He X H, Schmid F. Phys. Rev. Lett., 2008, 100:137802.
[23] 盛玉萍(Sheng Y P), 闫南(Yan N), 朱雨田(Zhu Y T), 安健(An J). 化学进展(Progress in Chemistry), 2014, 26:358.
[24] 张连斌(Zhang L B), 王珂(Wang K), 朱锦涛(Zhu J T). 高分子学报(Acta Polymerica Sinica), 2017, 8(8):1261.
[25] Xu J P, Yang Y, Wang K, Wu Y Q, Zhu J T. Mater. Chem. Front., 2017, 1:507.
[26] Wu Y Q, Wang K, Tan H Y, Xu J P, Zhu J T. Langmuir, 2017, 33:9889.
[27] Deng R H, Li H, Liang F X, Zhu J T, Li B H, Xie X L, Yang Z Z. Macromolecules, 2015, 48:5855.
[28] 邓仁华(Deng R H). 华中科技大学博士论文(Doctoral Dissertation of Huazhong University of Science and Technology), 2015.
[29] Yan N, Sheng Y P, Liu H X, Zhu Y T, Jiang W. Langmuir, 2015, 31:1660.
[30] Tsai C C, Chen J T. Langmuir, 2015, 31:2569.
[31] Zoelen W V, Brinke G T. Soft Matter, 2009, 5:1568.
[32] Bang J, Kim S H, Drockenmuller E, Misner M J, Russell T P, Hawker C J. J. Am. Chem. Soc., 2006, 128:7622.
[33] Ku K H, Kim Y, Yi G R, Jung Y S, Kim B J. ACS Nano, 2015, 9:11333.
[34] Higuchi T. Polym. J., 2017, 49:467.
[35] Yan N, Liu H X, Zhu Y T, Jiang W, Dong Z Y. Macromolecules, 2015, 48:5980.
[36] Bae J, Lawrence J, Miesch C, Ribbe A, Li W K, Emrick T, Zhu J T, Hayward R C. Adv. Mater., 2012, 24:2735.
[37] Yabu H, Jinno T, Koike K, Higuchi T, Shimomura M. J. Polym. Sci., Part B:Polym. Phys., 2011, 49:1717.
[38] Jeon S J, Yang S M, Kim B J, Petrie J D, Jang S G, Kramer E J, Pine D J, Yi G R. Chem. Mater., 2009, 21:3739.
[39] Chen P Y, Yang Y, Dong B J, Huang Z H, Zhu G L, Cao Y F, Yan L T. Macromolecules, 2017, 50:2078.
[40] Ma C, Wu H, Huang Z H, Guo R H, Hu M B, Kübel C, Yan L T, Wang W. Angew.Chem. Int.Ed., 2015, 54:15699.
[41] Liu Y J, He J, Yang K K, Yi C L, Liu Y, Nie L M, Khashab N M, Chen X Y, Nie Z H. Angew.Chem. Int.Ed., 2015, 54:15809.
[42] Liu Z Y, Guo R H, Xu G X, Huang Z H, Yan L T. Nano Lett., 2014, 14:6910.
[43] Nakano T, Kawaguchi D, Matsushita Y. J. Am. Chem. Soc., 2013, 135:6798.
[44] Kao J, Bai P, Chuang V P, Jiang Z, Ercius P, Xu T. Nano Lett., 2012, 12:2610.
[45] Yap F L, Thoniyot P, Krishnan S, Krishnamoorthy S. ACS Nano, 2012, 6:2056.
[46] Shin J M, Kim Y, Yun H, Yi G R, Kim B J. ACS Nano, 2017, 11:2133.
[47] Yan N, Zhu Y T, Jiang W. Soft Matter, 2016, 12:965.
[48] Thomas E L, Reffner J R, Bellare J. J. Phys., 1990, 51:C7363.
[49] Zhang K, Yu X L, Gao L, Chen Y M, Yang Z Z. Langmuir, 2008, 24:6542.
[50] Zhang K, Gao L, Chen Y M, Yang Z Z. J. Colloid Interface Sci., 2010, 346:48.
[51] Yabu H. Polym. J., 2013, 45:261.
[52] Arita T, Kanahara M, Motoyoshi K, Koike K, Higuchi T, Yabu H. J. Mater. Chem. C, 2013, 1:207.
[53] Zhang J, Kong W X, Duan H M. Langmuir, 2017, 33:3123.
[54] Chi P, Wang Z, Li B H, Shi A C. Langmuir, 2011, 27:11683.
[55] Yabu H, Higuchi T, Jinnai H. Soft Matter, 2014, 10:2919.
[56] Sheng Y P, Xia L, Yang G Z, Xia Y Q, Huang Y, Pan C J, Zhu Y T. RSC Adv., 2017, 7:38666.
[57] Hagy M C, Hernandez R. J. Chem. Phys., 2014, 140:034701.
[58] Deng R H, Li H, Zhu J T, Li B H, Liang F X, Jia F, Qu X Z, Yang Z Z. Macromolecules, 2016, 49:1362.
[59] Schmidt B V K J, Elbert J, Scheid D, Hawker C J, Klinger D, Gallei M. ACS Macro Lett., 2015, 4:731.
[60] Xu J P, Wu Y Q, Wang K, Shen L, Xie X L, Zhu J T. Soft Matter, 2016, 12:3683.
[61] Klinger D, Wang C X, Connal L A, Audus D J, Jang S G, Kraemer S, Killops K L, Fredrickson G H, Kramer E J, Hawker C J. Angew.Chem. Int.Ed., 2014, 53:7018.
[62] Zhu J T, Hayward R C. Angew.Chem. Int.Ed., 2008, 47:2113.
[63] Wang Z, Cao Y Y, Zhang X Y, Wang D G, Liu M, Xie Z G, Wang Y P. Langmuir, 2016, 32:13517.
[64] Ku K H, Shin J M, Klinger D, Jang S G, Hayward R C, Hawker C J, Kim B J. ACS Nano, 2016, 10:5243.
[65] Kempe K, Wylie R A, Dimitriou M D, Tran H, Hoogenboom R, Schubert U S, Hawker C J, Campos L M, Connal L A. J. Polym. Sci., Part A:Polym. Chem., 2016, 54:750.
[66] Chen C, Xiao Z Y, Connal L A. Aust. J. Chem., 2016, 69:741.
[67] Jeon S J, Yi G R, Yang S M. Advanced Materials, 2008, 20:4103.
[68] Higuchi T, Tajima A, Motoyoshi K, Yabu H, Shimomura M. Angew.Chem. Int.Ed., 2008, 47:8044.
[69] Jeon S J, Yi G R, Koo C M, Yang S M. Macromolecules, 2007, 40:8430.
[70] Shin J M, Kim M P, Yang H, Ku K H, Jang S G, Youm K H, Yi G R, Kim B J. Chem. Mater., 2015, 27:6314.
[71] Liu S Q, Deng R H, Shen L, Xie X L, Zhu J T. Macromolecules, 2015, 48:5944.
[72] Higuchi T, Motoyoshi K, Sugimori H, Jinnai H, Yabu H, Shimomura M. Soft Matter, 2012, 8:3791.
[73] Li L, Matsunaga K, Zhu J T, Higuchi T, Yabu H, Shimomura M, Jinnai H, Hayward R C, Russell T P. Macromolecules, 2010, 43:7807.
[74] Higuchi T, Shimomura M, Yabu H. Macromolecules, 2013, 46:4064.
[75] Deng R H, Liu S Q, Liang F X, Wang K, Zhu J T, Yang Z Z. Macromolecules, 2014, 47:3701.
[76] Deng R H, Liu S Q, Li J Y, Liao Y G, Tao J, Zhu J T. Adv. Mater., 2012, 24:1889.
[77] Pisani E, Ringard C, Nicolas V, Raphaël E, Rosilio V, Moine L, Fattal E, Tsapis N. Soft Matter, 2009, 5:3054.
[78] Xu J P, Yang Y, Wang K, Li J Y, Zhou H M, Xie X L, Zhu J T. Langmuir, 2015, 31:10975.
[79] Deng R H, Liang F X, Li W K, Liu S Q, Liang R J, Cai M G, Yang Z Z, Zhu J T. Small, 2013, 9:4099.
[80] Higuchi T, Tajima A, Yabu H, Shimomura M. Soft Matter, 2008, 4:1302.
[81] Zhu J T, Ferrer N, Hayward R C. Soft Matter, 2009, 5:2471.
[82] Hussain M, Xie J, Hou Z Y, Shezad K, Xu J P, Wang K, Gao Y J, Shen L, Zhu J T. ACS Appl. Mater. Interfaces, 2017, 9:14391.
[83] Zhu J T, Hayward R C. J. Am. Chem. Soc., 2008, 130:7496.
[84] Liu S Q, Deng R H, Li W K, Zhu J T. Adv. Funct. Mater., 2012, 22:1692.
[85] Yang H, Kang D J, Ku K H, Cho H H, Park C H, Lee J, Lee D C, Ajayan P M, Kim B J. ACS Macro Lett., 2014, 3:985.
[86] Kim M P, Ku K H, Kim H J, Jang S G, Yi G R, Kim B J. Chem. Mater., 2013, 25:4416.
[87] Ku K H, Kim M P, Paek K, Shin J M, Chung S, Jang S G, Chae W S, Yi G R, Kim B J. Small, 2013, 9:2667.
[88] He Y, Zhang Y, Yan N, Zhu Y T, Jiang W, Shi D. Nanoscale, 2017, 9:15056.
[89] Yan N, Zhang Y, He Y, Zhu Y T, Jiang W. Macromolecules, 2017, 50:6771.
[90] Zhang Y, He Y, Yan N, Zhu Y T, Hu Y X. J. Phys. Chem. B, 2017, 121:8417.
[91] Wang N X, Liao Y G, Deng R H, Liu S Q, Cao N, Tan B, Zhu J T, Xie X L. Soft Matter, 2012, 8:2697.
[92] Hickey R J, Luo Q J, Park S J. ACS Macro Lett., 2013, 2:805.
[93] Yang H, Ku K H, Shin J M, Lee J, Park C H, Cho H H, Jang S G, Kim B J. Chem. Mater., 2016, 28:830.
[94] Jang S G, Audus D J, Klinger D, Krogstad D V, Kim B J, Cameron A, Kim S W, Delaney K T, Hur S M, Killops K L, Fredrickson G H, Kramer E J, Hawker C J. J. Am. Chem. Soc., 2013, 135:6649.
[95] Ku K H, Yang H, Shin J M, Kim B J. J. Polym. Sci., Part A:Polym. Chem., 2015, 53:188.
[96] Deng R H, Liang F X, Qu X Z, Wang Q, Zhu J T, Yang Z Z. Macromolecules, 2015, 48:750.
[97] Kim M P, Kang D J, Jung D W, Kannan A G, Kim K H, Ku K H, Jang S G, Chae W S, Yi G R, Kim B J. ACS Nano, 2012, 6:2750.
[98] Wang J Y, Li W K, Zhu J T. Polymer, 2014, 55:1079.
[99] Thompson R B, Ginzburg V V, Matsen M W, Balazs A C. Science, 2001, 292:2469.
[100] Nie X B, Zhang Y, Wang M, Jiang W. New J. Chem., 2016, 40:4556.
[101] Ku K H, Shin J M, Kim M P, Lee C H, Seo M K, Yi G R, Jang S G, Kim B J. J. Am. Chem. Soc., 2014, 136:9982.
[102] Xu J P, Li J, Yang Y, Wang K, Xu N, Li J Y, Liang R J, Shen L, Xie X L, Tao J, Zhu J T. Angew.Chem. Int.Ed., 2016, 55:14633.
[103] Staff R H, Gallei M, Mazurowski M, Rehahn M, Berger R, Landfester K, Crespy D. ACS Nano, 2012, 6:9042.
[104] Zhao Y, Berger R, Landfester K, Crespy D. Small, 2015, 11:2995.
[105] Pisani E, Tsapis N, Galaz B, Santin M, Berti R, Taulier N, Kurtisovski E, Lucidarme O, Ourevitch M, Doan B T, Beloeil J C, Gillet B, Urbach W, Bridal S L, Fattal E. Adv. Funct. Mater., 2008, 18:2963.
[106] Deng R H, Derry M J, Mable C J, Ning Y, Armes S P. J. Am. Chem. Soc., 2017, 139:7616.
[107] Staff R H, Rupper P, Lieberwirth I, Landfester K, Crespy D. Soft Matter, 2011, 7:10219.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[6] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[7] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[8] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[11] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[12] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[13] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[14] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[15] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
阅读次数
全文


摘要

嵌段共聚物三维软受限自组装