English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 304-313 DOI: 10.7536/PC170903 前一篇   后一篇

• 综述 •

溶剂在反应控制相转移催化反应中的影响

张金帅1, 于凤丽1*, 袁冰1, 解从霞1*, 于世涛2   

  1. 1. 青岛科技大学生态化工国家重点实验室培育基地 青岛 266042;
    2. 青岛科技大学化工学院 青岛 266042
  • 收稿日期:2017-09-04 修回日期:2017-09-15 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 于凤丽,yufliqust@163.com;解从霞,xiecongxia@126.com E-mail:yufliqust@163.com;xiecongxia@126.com
  • 基金资助:
    国家自然科学基金项目(No.21476120)资助

Solvent Effects on Reaction-Controlled Phase-Transfer Catalysis

Jinshuai Zhang1, Fengli Yu1*, Bing Yuan1, Congxia Xie1*, Shitao Yu2   

  1. 1. State Key Laboratory Base of Eco-Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042;
    2. College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
  • Received:2017-09-04 Revised:2017-09-15 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21476120).
本文主要探讨了溶剂在反应控制相转移催化反应中的影响。反应控制相转移催化体系兼具均相催化与多相催化的优点,既解决了均相催化中催化剂难以回收的问题又克服了多相催化中反应速率慢、反应时间较长、活性组分易流失以及选择性较低的缺点。催化剂在反应体系中所表现出来的反应控制相转移特性不仅和本身的阴离子、阳离子组成有关,还和体系中溶剂的种类密切相关。合适的溶剂不但可以提高底物的转化率以及产物的产率,同时还有利于催化剂的回收。本文就溶剂在多种反应控制相转移催化体系中的影响进行了综述,包括烯烃环氧化、醇氧化制备醛/酮、酯化、烯/醇氧化制备二元羧酸、缩醛反应、氧化脱硫、羟基化反应以及Se催化还原等体系。最后,对目前催化体系中存在的问题提出了可能的解决方案并对反应控制相转移催化体系在其他方面的潜在应用和发展进行了展望。
The paper mainly discusses the effects of solvents on reaction-controlled phase-transfer catalysis which possesses the advantages of both homogeneous and heterogeneous catalysis. The reaction-controlled phase-transfer catalysis system not only realizes the catalyst recovery from the product over homogeneous catalysis but also avoids the low reaction rate, long reaction time, leaching of the active species and low selectivity in heterogeneous catalysis. For a reaction-controlled phase-transfer catalyt,its characteristic is affected not only by its composition including anion and cation but also by the used solvent during the reaction. A suitable solvent can increase the conversion rate of the substrate and the yield of product, and benefits the recovery of the catalyst. The effects of solvents on reaction-controlled phase-transfer catalysis systems including epoxidation of olefins, oxidation of alcohols to prepare aldehydes or ketones, esterification, oxidative cleavage of olefins or alcohols to prepare dicarboxylic acid, acetalation, oxidative desulfurization, hydroxylation reaction and catalytic reduction by Se, are presented in this paper. Finally, some possible measures to overcome the shortcomings in the present catalytic system are put forward and the future research prospects are discussed.
Contents
1 Introduction
2 Principle of the reaction-controlled phase-transfer catalysis
3 Effects of solvents on reaction-controlled phase-transfer catalysis
3.1 Epoxidation of olefins
3.2 Oxidation of alcohols to prepare aldehydes or ketones
3.3 Esterification
3.4 Oxidative cleavage of olefins or alcohols to prepare dicarboxylic acid
3.5 Acetalation
3.6 Oxidative desulfurization
3.7 Hydroxylation reaction
3.8 Catalytic reduction by Se
4 Conclusion and outlook

中图分类号: 

()
[1] Yang X L, Dai W L, Gao R H, Fan K N. J. Catal., 2007, 249(2):278.
[2] Zhu Q J, Chu X F, Zhang Z Y, Dai W L, Fan K N. RSC Adv., 2013, 3(6):1744.
[3] Yang X L, Qiao L M, Dai W L. Chinese J. Catal., 2015, 36(11):1875.
[4] Dioumaev V K, Bullock R M. Nature, 2003, 424(6948):530.
[5] Süβner M, Plenio H. Angew. Chem. Int. Ed., 2005, 44(42):6885.
[6] Xi Z W, Zhou N, Sun Y, Li K N. Science, 2001, 292(5519):1139.
[7] 李军(Li J), 高爽(Gao S), 奚祖威(Xi Z W). 催化学报(Chinese Journal of Catalysis), 2010, 31(08):895.
[8] 李坤兰(Li K L), 周宁(Zhou N), 奚祖威(Xi Z W). 催化学报(Chinese Journal of Catalysis), 2002, 23(02):125.
[9] Yang X G, Gao S, Xi Z W. Org. Process. Res. Dev., 2005, 9(3):294.
[10] Song Y F, Tsunashima R. Chem. Soc. Rev., 2012, 41(22):7384.
[11] Zhou Y, Guo Z J, Hou W, Wang Q, Wang J. Catal. Sci. Technol., 2015, 5(46):4324.
[12] Narkhede N, Singh S, Patel A. Green Chem., 2015, 17(1):89.
[13] Zhou Y, Chen G J, Long Z Y, Wang J. RSC. Adv., 2014, 4(79):42092.
[14] Rosnes M H, Musumeci C, Yvon C, Macdonell A, Pradeep C P, Sartorio C, Long D L, Pignataro B, Cronin L. Small, 2013, 9(13):2316.
[15] Yvon C, Surman A J, Hutin M, Alex J, Smith B O, Long D L, Cronin L, Angew. Chem., 2004, 126(13):3404.
[16] Yang H K, Su M M, Ren L J, Tang J, Yan Y K, Miao W K, Zheng P, Wang W, Eur. J. Inorg. Chem., 2013, 2013(8):1381.
[17] Misono M. Chem. Commun., 2001, 13(13):1141.
[18] Boyd T, Mitchell, S G, Miras H N, Long D L, Cronin L. Dalton Trans., 2010, 39(28):6460.
[19] Brégeault J M, Vennat M, Salles L, Piquemal J Y, Mahha Y, Briot E, Bakala P C, Atlamsani A, Thouvenot R. J. Mol. Catal. A-Chem., 2006, 250:177.
[20] Rosnes M H, Yvon C, Long D L, Cronin L. Dalton Trans., 2012, 41(33):10071.
[21] Mizuno N, Misono M. Chem. Rev., 1998, 98(1):199.
[22] Dolbecq A, Dumas E, Mayer C R, Mialane P. Chem. Rev., 2010, 110(10):6009.
[23] Fu H, Qin C, Lu Y, Zhang Z M, Li Y G, Su Z M, Li W L, Wang E B. Angew. Chem. Int. Ed., 2012, 51(32):7985.
[24] Ding Y, Zhao W, Hua H, Ma B C. Green Chem., 2008, 10(9):910.
[25] Qiao Y X, Hou Z S, Li H, Hu Y, Feng B, Wang X R, Li H, Huang Q F. Green Chem., 2009, 11(12):1955.
[26] Leng Y, Wang J, Zhu D R, Ren X Q, Ge H Q, Shen L. Angew. Chem. Int. Ed., 2009, 48(1):168.
[27] Leng Y, Jiang P P, Wang J. Catal. Commun., 2012, 25(20):41.
[28] Leng Y, Wang J, Zhu D R, Wu Y J, Zhao P P. J. Mol. Catal. A-Chem., 2009, 313(1):1.
[29] Li H, Qiao Y X, Hua L, Hou Z S, Feng B, Pan Z Y, Hu Y, Wang X R, Zhao X G, Yu Y Y. ChemCatChem, 2010, 2(9):1165.
[30] 张恒耘(Zhang H Y), 吕迎(Lv Y), 李军(Li J), 高爽(Gao S), 奚祖威(Xi Z W). 催化学报(Chinese Journal of Catalysis), 2010, 31(10):1253.
[31] Sun Y, Xi Z W, Cao G Y. J. Mol. Catal. A-Chem, 2001, 166(2):219.
[32] 杨小格(Yang X G), 张生军(Zhang S J), 李萌(Li M),奚祖威(Xi Z W), 高爽(Gao S). 催化学报(Chinese Journal of Catalysis), 2006, 27(01):50.
[33] 杨洪云(Yang H Y), 陈璐(Chen L), 高焕新(Gao H X), 金国杰(Jin G J), 丁琳(Ding L). 石油化工(Petrochemical Technology), 2008, 37(11):1172.
[34] Zhao W, Ma B C, Hua H, Zhang Y S, Ding Y. Catal. Commun., 2008, 9(14):2455.
[35] Zhao W, Ding Y. React. Kinet. Mech. Cat., 2013, 109(2):509.
[36] 李明强(Li M Q), 蹇锡高(Jian X G), 韩铁民(Han T M), 安悦(An Y). 化学学报(Acta Chemica Sinica), 2004, 62(06):540.
[37] Li H, Hou Z S, Qiao Y X, Feng B, Hu Y, Wang X R, Zhao X G. Catal. Commun., 2010, 11(5):470.
[38] Ma B C, Zhao W, Zhang F M, Zhang Y S, Wu S Y, Ding Y. RSC Adv., 2014, 4(61):32054.
[39] Zhou M D, Liu M J, Huang L L, Zhang J, Wang J Y, Li X P,Kühn F E, Zang S L. Green Chem., 2015, 17(2):1186.
[40] Zheng W G, Tan R, Yin S F, Zhao Y Y, Zhao G W, Chen Y J, Yin D H. Catal. Sci. Technol., 2015, 5(4):2092.
[41] Amarante T R, Neves P, Valente A A, Paz F A A, Pillinger M, Goncalves L S. J. Catal., 2016, 340:354.
[42] Rezaeifard A, Jafarpour M, Haddad R, Feizpour F. Catal. Commun., 2017, 95(10):88.
[43] Bortolini O, Conte V, Furia F D, Modena G. J. Org. Chem., 1986, 51(14):2661.
[44] Jing L, Shi J, Zhang F M, Zhong Y J, Zhu W D. Ind. Eng. Chem. Res., 2013, 52(30):10095.
[45] Neves P, Lysenko A B, Gomes A C, Pillinger M, Gonçalves I S, Valente A A. Catal. Lett., 2017, 147(5):1133.
[46] Guo M L. Green Chem., 2004, 6(6):271.
[47] 翁志焕(Weng Z H), 王锦艳(Wang J Y), 蹇锡高(Jian X G). 化学学报(Acta Chemica Sinica), 2008, 66(03):371.
[48] Weng Z H, Wang J Y, Jian X G. Chinese Chem. Lett., 2007, 18(8):936.
[49] 翁志焕(Weng Z H), 王锦艳(Wang J Y), 刘志勇(Liu Z Y), 蹇锡高(Jian X G). 化学学报(Acta Chemica Sinica), 2007, 65(11):1081.
[50] Weng Z H, Liao G X, Wang J Y, Jian X G. Catal. Commun., 2007, 8(10):1493.
[51] Zhang S J, Gao S, Xi Z W, Xu J. Catal. Commun., 2007, 8(3):531.
[52] Zhang S J, Zhao G D, Gao S, Xi Z W, Xu J. J. Mol. Catal. A-Chem., 2008, 289(1):22.
[53] Leng Y, Liu J, Jiang P P, Wang J. RSC Adv., 2012, 2(31):11653.
[54] Chen Y J, Tan R, Zheng W G, Zhang Y Y, Zhao G W, Yin D H. Catal. Sci. Technol., 2014, 4(11):4084.
[55] Chen G J, Zhou Y, Long Z, Wang X C, Li J, Wang J. ACS. Appl. Mater. Inter., 2014, 6(6):4438.
[56] Malakooti R, Feghhi A. New J. Chem., 2017, 41(9):3405.
[57] Fang D, Zhou X L, Ye A W, Liu Z L. Ind. Eng. Chem. Res., 2006, 45(24):7982.
[58] Binks B P, Dyab A K, Fletcher P D. Chem. Commun., 2003, 20(20):2540.
[59] Li K X, Chen L, Wang H L, Lin W B, Yan Z C. Appl. Catal. A-Gen., 2011, 392(1/2):233.
[60] Zhen B, Li H S, Jiao Q Z, Li Y, Wu Q, Zhang Y P. Ind. Eng. Chem. Res., 2012, 51(31):10374.
[61] Huang M Y, Han X X, Hung C T, Lin J C, Wu P H, Wu J C, Liu S B. J. Catal., 2014, 320(1):42.
[62] Duan X X, Sun Z, Li X Y, Wang X H, Wang S T, Li S W. Energy Technol., 2015, 3(8):871.
[63] Gao L, Liu T P, Tao X C, Huang Y M. Tetrahedron Lett., 2016, 57(44):4905.
[64] Antonelli E, D'Aloisio R, Gambaro M, Fiorani T, Venturello C. J. Org. Chem., 1999, 63(21):7190.
[65] Guo M L. Chinese J. Catal., 2003, 24(7):483.
[66] Chen H, Dai W L, Yang X L, Gao R H, Cao Y, Li H X, Fan K N. Appl. Catal. A-Gen., 2006, 309(1):62.
[67] Chen H, Dai W L, Gao R H, Cao Y, Li H X, Fan K N. Appl. Catal. A-Gen., 2007, 328(2):226.
[68] 王天华(Wang T H), 杨菲(Yang F), 于凤琴(Yu F Q), 易莎莎(Yi S S), 纪三郝(Ji S H). 山东化工(Shandong Chemical Industry), 2016, 45(2):49.
[69] Zhang J, Bao S H, Yang J G. Chinese Sci. Bull., 2009, 54(21):3958.
[70] Han X X, Yan W, Chen K, Hung C T, Liu L L, Wu P H, Huang S J, Liu S B. Appl. Catal. A-Gen., 2014, 485:149.
[71] Rafiee E, Eavani S. Catal. Commun., 2012, 25:64.
[72] 于凤丽(Yu F L), 王睿(Wang R). 化学学报(Acta Chemica Sinica), 2014, 72(1):105.
[73] Yang C B, Jin Q P, Zhang H, Liao J, Zhu J, Yu B, Deng J G. Green Chem., 2009, 11(9):1401.
[74] Nisar A, Lu Y, Zhuang J, Wang X. Angew. Chem., 2011, 123:3245.
[75] Nisar A, Zhuang J, Wang X. Adv. Mater., 2011, 23(9):1130.
[76] Zheng H W, Sun Z, Chen X L, Zhao Q, Wang X H, Jiang Z J. Appl. Catal. A-Gen, 2013, 467(10):26.
[77] Zhu W S, Wu P W, Chao Y H, Li H M, Zou F, Xun S H, Zhu F X, Zhao Z. Ind. Eng. Chem. Res., 2013, 52(49):17399.
[78] Zhuang J Z, Hu B, Tan J J, Jin X Y. Transit. Metal. Chem., 2014, 39(2):213.
[79] Yahya R, Craven M, Kozhevnikova E F, Steiner A, Samunal P, Kozhevnikov L V, Bergbreiter D E. Catal. Sci. Technol., 2015, 5(2):818.
[80] Ye J X, Wang J Y, Wang X, Zhou M D. Catal. Commun., 2016, 81:1.
[81] Mimoun H, Saussine L, Daire E, Postel M, Fischer J, Weiss R. J. Am. Chem. Soc., 1983, 105(10):3101.
[82] Nomiya K, Nemoto Y, Hasegawa T, Matsuoka S. J. Mol. Catal. A-Chem., 2000, 152(1/2):55.
[83] Zhang J, Tang Y, Li G Y, Hu C W. Appl. Catal. A-Gen., 2005, 278(2):251.
[84] Long Z Y, Zhou Y, Chen G J, Zhao P P, Wang J. Chem. Eng. J., 2014, 239:19.
[85] Li M Q, Jian X G, Han T M, Liu L, Shi Y L. Chinese J. Catal., 2004, 25(9):681.
[86] Schwendt P, Oravcová A, Tyršelová J, Paverlcik F. Polyhedron, 1996, 15(24):4507.
[87] Zhao P P, Wang J, Chen G J, Zhou Y, Huang J. Catal. Sci. Technol., 2013, 3(5):1394.
[88] Chen J Z, Ling G, Lu S W. Eur. J. Org. Chem., 2003, 34(17):3446.
[89] Chen J Z, Lu S W. Appl. Catal. A-Gen., 2004, 261(2):199.
[90] Liu X Z, Liu Q, Lu S W. Chinese J. Catal., 2004, 25(8):597.
[91] Xiang K S, Liu H, Yang B T, Zhang C, Yang S, Liu Z L, Cao L, Xie X F, Chai L Y, Min X B. Environ. Sci. Pollut. Res., 2016, 23(8):1.
[1] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[2] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[3] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[4] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[5] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[6] 尹钰, 马春慧, 李伟, 刘守新. 葡萄糖制备5-羟甲基糠醛的溶剂体系及转化机理[J]. 化学进展, 2021, 33(10): 1856-1873.
[7] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[8] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[9] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[10] 梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9): 1263-1282.
[11] 张浩, 刘静, 崔崑, 姜涛, 马志. 含胍基抗菌聚合物的合成及应用[J]. 化学进展, 2019, 31(5): 681-689.
[12] 赵剑曦, 顾攀攀, 曾慧, 邓生禄. 表面活性剂在非极性有机溶剂中的自组装[J]. 化学进展, 2019, 31(5): 643-653.
[13] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[14] 蔡勤山, 王世荣, 肖殷, 李祥高. 交联型小分子空穴传输材料在溶液工艺制备有机发光二极管中的应用[J]. 化学进展, 2018, 30(8): 1202-1221.
[15] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.