English
新闻公告
More
化学进展 2018, Vol. 30 Issue (1): 101-111 DOI: 10.7536/PC170836 前一篇   后一篇

• 综述 •

RAFT乳液聚合

项青, 罗英武*   

  1. 化学工程联合国家重点实验室 浙江大学化学工程与生物工程学院 杭州 310027
  • 收稿日期:2017-09-01 修回日期:2017-12-11 出版日期:2018-01-15 发布日期:2017-12-13
  • 通讯作者: 罗英武,e-mail:yingwu.luo@zju.edu.cn E-mail:yingwu.luo@zju.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(No.21636008)资助

RAFT Emulsion Polymerization

Qing Xiang, Yingwu Luo*   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2017-09-01 Revised:2017-12-11 Online:2018-01-15 Published:2017-12-13
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21636008).
高分子材料性能追本朔源主要由分子链微结构决定。以RAFT聚合为代表的"活性"/可控自由基聚合结合了传统自由基聚合和活性阴离子聚合各自的优点,提供了一种有效调控聚合物分子链微结构的聚合方法。RAFT乳液聚合作为"活性"/可控自由基聚合中具有工业应用前景的聚合方法,在过去二十年受到了学术界的广泛关注。本文总结了RAFT乳液聚合乳液失稳机理、聚合动力学、链结构的可控性等方面的进展。在此基础上,介绍了通过RAFT乳液聚合这一可控制备聚合物新材料的平台制备得到的新型嵌段共聚物、梯度共聚物,并展望了RAFT乳液聚合在高分子合成材料领域的应用前景。
The properties of polymer materials are based on chain microstructures. Combining with the merits of both conventional radical polymerization and living anionic polymerization, controlled/"living" radical polymerizations(CLRPs) represented by RAFT polymerization have been shown to be a powerful tool to finely tune chain microstructures. RAFT emulsion polymerization, as a CLRP process very promisingly used in industry, has received extensive attentions for the past two decades. The current review summarizes the up-to-date status of RAFT emulsion polymerization in terms of colloidal instability, polymerization kinetics, and the controllability over chain microstructures, including molecular weight, PDI and livingness. Some new materials of block and gradient copolymers from the RAFT emulsion polymerization are summarized. In addition, the prospects of RAFT emulsion polymerization in polymeric material synthesis are also highlighted.
Contents
1 Introduction
2 Colloidal instability of RAFT emulsion polymerization
3 Controllability of RAFT emulsion polymerization
3.1 Polymerization kinetics
3.2 Molecular weight and PDI
3.3 Livingness and high molecular weight polymer
4 New materials synthesized via RAFT emulsion polymerization
4.1 Block copolymer
4.2 Gradient copolymer
5 Conclusion

中图分类号: 

()
[1] Szwarc M, Levy M, Milkovich R. J. Am. Chem. Soc., 1956, 78:2656.
[2] 潘祖仁(Pan Z R). 高分子化学(Polymer Chemistry). 4th edition. 北京:化学工业出版社(Beijing:Chemical Industry Press), 2007.
[3] Chiefari J, Chong Y, Ercole F, Krstina J, Jeffery J, Le T P, Mayadunne R T, Meijs G F, Moad C L, Moad G. Macromolecules, 1998, 31:5559.
[4] Matyjaszewski K, Xia J. Chem. Rev., 2001, 101:2921.
[5] Kamigaito M, Ando T, Sawamoto M. Chem. Rev., 2001, 101:3689.
[6] Hawker C J, Bosman A W, Harth E. Chem. Rev., 2001, 101:3661.
[7] Matyjaszewski K, Müller A H. Controlled and Living Polymerizations:from Mechanisms to Applications. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA, 2009.
[8] Matyjaszewski K, Spanswick J. Mater. Today, 2005, 8:26.
[9] Zetterlund P B, Kagawa Y, Okubo M. Chem. Rev., 2008, 108:3747.
[10] Moad G, Rizzardo E, Thang S H. Polymer, 2008, 49:1079.
[11] Gody G, Maschmeyer T, Zetterlund P B, Perrier S. Macromolecules, 2014, 47:3451.
[12] Gody G, Maschmeyer T, Zetterlund P B, Perrier S. Nat. Commun., 2013, 4:2505.
[13] Gilbert R G. Emulsion Polymerization:A Mechanistic Approach. London:Academic Pr, 1995.
[14] Moad G, Chiefari J, Chong Y K, Krstina J, Mayadunne R T A, Postma A, Rizzardo E, Thang S H. Polym. Int., 2000, 49:993.
[15] Mayadunne R T A, Rizzardo E, Chiefari J, Chong Y K, Moad G, Thang S H. Macromolecules, 1999, 32:6977.
[16] Uzulina I, Kanagasabapathy S, Claverie J. Macromol. Symp., 2000, 150:33.
[17] Charmot D, Corpart P, Adam H, Zard S Z, Biadatti T, Bouhadir G. Macromol. Symp., 2000, 150:23.
[18] Monteiro M J, Sjöberg M, van der Vlist J, Göttgens C M. J. Polym. Sci. Part A:Polym. Chem., 2000, 38:4206.
[19] Monteiro M J, de Barbeyrac J. Macromolecules, 2001, 34:4416.
[20] Monteiro M J, Adamy M M, Leeuwen B J, van Herk A M, Destarac M. Macromolecules, 2005, 38:1538.
[21] Shim S E, Shin Y, Jun J W, Lee K, Jung H, Choe S. Macromolecules, 2003, 36:7994.
[22] Shim S E, Shin Y, Lee H, Choe S. Polym. Bull., 2003, 51:209.
[23] Apostolovic B, Quattrini F, Butté A, Storti G, Morbidelli M. Helv. Chim. Acta, 2006, 89:1641.
[24] Luo Y, Cui X. J. Polym. Sci. Part A:Polym. Chem., 2006, 44:2837.
[25] De Brouwer H, Tsavalas J G, Schork F J, Monteiro M J. Macromolecules, 2000, 33:9239.
[26] Luo Y, Tsavalas J, Schork F J. Macromolecules, 2001, 34:5501.
[27] Monteiro M J, Hodgson M, de Brouwer H. J. Polym. Sci. Part A:Polym. Chem., 2000, 38:3864.
[28] Urbani C N, Nguyen H N, Monteiro M J. Aust. J. Chem., 2006, 59:728.
[29] Nozari S, Tauer K. Polymer, 2005, 46:1033.
[30] Nozari S, Tauer K, Ali A M I. Macromolecules, 2005, 38:10449.
[31] Ferguson C J, Hughes R J, Pham B T, Hawkett B S, Gilbert R G, Serelis A K, Such C H. Macromolecules, 2002, 35:9243.
[32] Save M, Guillaneuf Y, Gilbert R G. Aust. J. Chem., 2006, 59:693.
[33] Prescott S W, Ballard M J, Rizzardo E, Gilbert R G. Macromolecules, 2002, 35:5417.
[34] Prescott S W, Ballard M J, Rizzardo E, Gilbert R G. Macromol. Theory Simul., 2006, 15:70.
[35] Luo Y, Wang X, Li B G, Zhu S. Macromolecules, 2011, 44:221.
[36] Ferguson C J, Hughes R J, Nguyen D, Pham B T T, Gilbert R G, Serelis A K, Such C H, Hawkett B S. Macromolecules, 2005, 38:2191.
[37] Ganeva D E, Sprong E, de Bruyn H, Warr G G, Such C H, Hawkett B S. Macromolecules, 2007, 40:6181.
[38] Rieger J, Osterwinter G, Bui C, Stoffelbach F, Charleux B. Macromolecules, 2009, 42:5518.
[39] Rieger J, Stoffelbach F, Bui C, Alaimo D, Jérôme C, Charleux B. Macromolecules, 2008, 41:4065.
[40] Wang X, Luo Y, Li B, Zhu S. Macromolecules, 2009, 42:6414.
[41] Zhang W, D'Agosto F, Boyron O, Rieger J, Charleux B. Macromolecules, 2011, 44:7584.
[42] Chenal M, Bouteiller L, Rieger J. Polym. Chem., 2013, 4:752.
[43] Chaduc I, Crepet A, Boyron O, Charleux B, D'Agosto F, Lansalot M. Macromolecules, 2013, 46:6013.
[44] Chaduc I, Girod M, Antoine R, Charleux B, D'Agosto F, Lansalot M. Macromolecules, 2012, 45:5881.
[45] Wi Y, Lee K, Lee B H, Choe S. Polymer, 2008, 49:5626.
[46] Manguian M, Save M, Charleux B. Macromol. Rapid Commun., 2006, 27:399.
[47] Barner-Kowollik C, Quinn J F, Morsley D R, Davis T P. J. Polym. Sci. Part A:Polym. Chem., 2001, 39:1353.
[48] Barner-Kowollik C, Quinn J F, Nguyen T L U, Heuts J P A, Davis T P. Macromolecules, 2001, 34:7849.
[49] Wang A R, Zhu S, Kwak Y, Goto A, Fukuda T, Monteiro M S. J. Polym. Sci. Part A:Polym. Chem., 2003, 41:2833.
[50] Barner-Kowollik C, Coote M L,Davis T P, Radom L, Vana P. J. Polym. Sci. Part A:Polym. Chem., 2003, 41:2828.
[51] Butté A, Storti G, Morbidelli M. Macromolecules, 2001, 34:5885.
[52] Lansalot M, Davis T P, Heuts J P A. Macromolecules, 2002, 35:7582.
[53] Luo Y, Wang R, Yang L, Yu B, Li B, Zhu S. Macromolecules, 2006, 39:1328.
[54] Yan K, Gao X, Luo Y. AIChE J., 2016, 62:2126.
[55] Hawkett B S, Napper D H, Gilbert R G. J. Chem. Soc. Faraday Trans. 1, 1980, 76:1323.
[56] Ugelstad J, Mörk P C, Aasen J O. J. Polym. Sci. Part A:Polym. Chem., 1967, 5:2281.
[57] Huang J, Zhao S, Gao X, Luo Y, Li B. Ind. Eng. Chem. Res., 2014, 53:7688.
[58] Zhu Y, Bi S, Gao X, Luo Y. Macromol. React. Eng., 2015, 9:503.
[59] Yan K, Gao X, Luo Y. J. Polym. Sci. Part A:Polym. Chem., 2015, 53:1848.
[60] Yan K, Luo Y. React. Chem.& Eng., 2017, 2:159.
[61] Zhao F, Mahdavian A R, Teimouri M B, Daniels E S, Klein A, El-Aasser M S. Colloid. Polym. Sci., 2012, 290:1247.
[62] Yan K, Gao X, Luo Y. Macromol. Rapid Commun., 2015, 36:1277.
[63] Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science, 2012, 336:434.
[64] Ruzette A V, Leibler L. Nat. Mater., 2005, 4:19.
[65] Leibler L. Prog. Polym. Sci., 2005, 30:898.
[66] Luo Y, Wang X, Zhu Y, Li B G, Zhu S. Macromolecules, 2010, 43:7472.
[67] 罗英武(Luo Y W). 化工学报(CIESC Journal), 2013, 64:415.
[68] Ma Z, Xie Y, Mao J, Yang X, Li T, Luo Y. Macromol. Rapid Commun., 2017, 38:1700268.
[69] Zheng Z, Gao X, Luo Y, Zhu S. Macromolecules, 2016, 49:2179.
[70] Mao J, Li T, Luo Y. J. Mater. Chem. C, 2017, 27:6834.
[71] Wei R, Luo Y, Zeng W, Wang F, Xu S. Ind. Eng. Chem. Res., 2012, 51:15530.
[72] Zhu Y, Gao X, Luo Y. J. Appl. Polym. Sci., 2016, 133:42833.
[73] Xiang Q, Luo Y. Polymer, 2016, 106:285.
[74] 郭云龙(Guo Y L),罗英武(Luo Y W).化工学报(CIESC Journal), 2016, 67:218.
[75] Li X, Liang S, Wang W J, Li B G, Luo Y, Zhu S. Macromol. React. Eng., 2015, 9:409.
[76] Sun X, Luo Y, Wang R, Li B G, Zhu S. AIChE J., 2008, 54:1073.
[77] Guo Y, Zhang J, Xie P, Gao X, Luo Y. Polym. Chem., 2014, 5:3363.
[78] Guo Y, Gao X, Luo Y. J. Polym. Sci. Part B:Polym. Phys., 2015, 53:860.
[79] Borisova O, Billon L, Zaremski M, Grassl B, Bakaeva Z, Lapp A, Stepanek P, Borisov O. Soft Matter, 2012, 8:7649.
[80] Tonnar J, Lacroix-Desmazes P. Soft Matter, 2008, 4:1255.
[81] Kim J, Gray M K, Zhou H, Nguyen S T, Torkelson J M. Macromolecules, 2005, 38:1037.
[82] Palermo E F, van der Laan H L, McNeil A J. Polym. Chem., 2013, 4:4606.
[83] Kim J, Zhou H, Nguyen S T, Torkelson J M. Polymer, 2006, 47:5799.
[84] Wang Y Q, Wang Y, Zhang H F, Zhang L Q. Macromol. Rapid Commun., 2006, 27:1162.
[85] Mok M M, Kim J, Torkelson J M. J. Polym. Sci. Part B:Polym. Phys., 2008, 46:48.
[86] Ogura Y, Terashima T, Sawamoto M. ACS Macro Letters, 2013, 2:985.
[87] Luo Y, Guo Y, Gao X, Li B G, Xie T. Adv. Mater., 2013, 25:743.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[3] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[4] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[5] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[6] 王倩倩, 吴立萍, 王菁, 王力元*. 嵌段共聚物的导向自组装[J]. 化学进展, 2017, 29(4): 435-442.
[7] 冯雨晨, 介素云, 李伯耿. 烯烃易位聚合制备遥爪聚合物及嵌段共聚物[J]. 化学进展, 2015, 27(8): 1074-1086.
[8] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[9] 魏玮, 刘敬成, 李虎, 穆启道, 刘晓亚. 微电子光致抗蚀剂的发展及应用[J]. 化学进展, 2014, 26(11): 1867-1888.
[10] 杨洁心, 刘雷, 徐君庭. 嵌段共聚物结晶性胶束[J]. 化学进展, 2014, 26(11): 1811-1820.
[11] 王璐璐, 黄海瑛, 何天白. 嵌段共聚物溶液自组装制备纳米管状聚集体[J]. 化学进展, 2014, 26(05): 810-819.
[12] 盛玉萍, 闫南, 朱雨田, 安健. 嵌段共聚物在选择性溶剂中自组装过程的计算机模拟[J]. 化学进展, 2014, 26(0203): 358-365.
[13] 付超, 朱雨田, 施德安. 嵌段共聚物的临界条件液相色谱分离与表征[J]. 化学进展, 2014, 26(01): 140-151.
[14] 熊兴泉*, 唐忠科, 蔡雷. 基于巯基点击反应与RAFT聚合的功能性聚合物合成[J]. 化学进展, 2012, (9): 1751-1764.
[15] 王志鹏, 袁金颖* . Diels-Alder反应在构建特殊结构高分子中的应用[J]. 化学进展, 2012, 24(12): 2342-2351.
阅读次数
全文


摘要

RAFT乳液聚合