English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 989-1012 DOI: 10.7536/PC170814 前一篇   后一篇

• 综述 •

体离子印迹材料的制备方法

王俊莲1,2*, 刘新宇1, 谢美英1, 王化军1   

  1. 1. 北京科技大学土木与资源工程学院 北京 100083;
    2. 化学工程联合国家重点实验室 北京 100084
  • 收稿日期:2017-08-15 修回日期:2018-01-15 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 王俊莲 E-mail:wangjunlian306@163.com
  • 基金资助:
    国家自然科学基金项目(No.21301104)、化学工程联合国家重点实验室开放基金项目(No.SKL-ChE-14A04)和中央高校基本科研业务费项目(No.FRF-TP-16-019A3)资助

Preparation of Bulk Ion-Imprinted Materials

Junlian Wang1,2*, Xinyu Liu1, Meiying Xie1, Huajun Wang1   

  1. 1. Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China;
    2. State Key Laboratory of Chemical Engineering, Beijing 100084, China
  • Received:2017-08-15 Revised:2018-01-15 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21301104), the State Key Laboratory of Chemical Engineering (No. SKL-ChE-14A04), and the Fundamental Research Funds for the Central Universities(No. FRF-TP-16-019A3).
离子印迹材料经过四十余年的发展,制备技术趋于成熟和多样化。根据离子印迹材料的主要特征,可将其大致分为三类:体印迹材料、表面印迹材料和磁性印迹材料。体印迹材料的识别位点分布于整个离子印迹材料中;表面印迹材料识别位点仅分布于离子印迹材料的表面;磁性印迹材料的识别位点既可分布于整个离子印迹材料中,亦可分布于表面,因其具有磁性容易分离而单独归为一类。本文综述了普通体离子印迹材料的制备方法,包括连锁聚合机理的本体聚合法、溶液聚合法、沉淀聚合法、分散聚合法、悬浮聚合法和乳液聚合法,及酚醛/胺醛缩合法、溶胶-凝胶法、自由基聚合和溶胶-凝胶结合法、以壳聚糖为配体和骨架的壳聚糖法等。此外,还总结了纳米级和热敏性体离子印迹材料的制备方法。最后,展望了体离子印记材料的应用和研发前景。
After more than forty years development, the preparation techniques of ion-imprinted materials have become mature and diverse. According to the main characteristics of the ion-imprinted materials, they can be classified into three groups:bulk imprinting materials, surface imprinting materials and magnetic ion-imprinted materials. The imprinting sites are distributed in the whole body for bulk imprinting materials, while only in the surface for surface imprinting materials. Magnetic ion-imprinted materials can be separated easily due to their magnetism, and their imprinting sites can be distributed in the whole body as well as only in the surface. The paper reviews the preparation methods of normal bulk ion-imprinted materials, including bulk/solution/precipitation/dispersion/suspension/emulsion polymerization methods, phenol-aldehyde/amine-aldehyde condensation polymerization methods, sol-gel process method, combination of free-radical polymerization and sol-gel process method, method using chitosan as ligand and backbone, etc. In addition, the preparation methods of nanoscale bulk ion-imprinted particles and thermo-sensitive bulk ion-imprinted materials are also reviewed. Finally, the future application and development of bulk ion-imprinted materials are prospected.
Contents
1 Introduction
2 Preparation of normal bulk ion-imprinted materials
2.1 Bulk polymerization method
2.2 Solution polymerization method
2.3 Precipitation polymerization method
2.4 Dispersion polymerization method
2.5 Suspension polymerization method
2.6 Emulsion polymerization method
2.7 Condensation polymerization method
2.8 Sol-gel process method
2.9 Method of combination of free-radical polymerization and sol-gel process
2.10 Prepared with chitosan
2.11 Other methods
3 Preparation of nanoscale bulk ion-imprinted particles
4 Preparation of thermo-sensitive ion-imprinted materials
5 Conclusion and outlook

中图分类号: 

()
[1] Nishide H, Tsuchida E. Makromolekulare Chemie-Macromol. Chem. Phys., 1976, 177:2295.
[2] Liu J, Yang X L, Cheng X Z, Peng Y, Chen H M. Anal. Methods, 2013, 5:1811.
[3] Zambrzycka E, Godlewska-Zylkiewicz B. Microchim. Acta, 2014, 181:1019.
[4] do Lago A C, Marchioni C, Mendes T V, Wisniewski C, Fadini P S, Luccas P O. Appl. Spectrosc., 2016, 70:1842.
[5] Kuras M J, Wieckowska E. Polym. Bull., 2015, 72:3227.
[6] Dadfarnia S, Shabani A M H, Dehghanpoor S, Frashah. J. Sep. Sci., 2016, 39:1509.
[7] Moussa M, Ndiaye M M, Pinta T, Pichon V, Vercouter T, Delaunay N. Anal. Chim. Acta, 2017, 963:44.
[8] Xi Y, Luo Y T, Luo J M, Luo X B. J. Chem. Eng. Data, 2015, 60:3253.
[9] Yang B, Zhang T, Tan W X, Liu P, Ding Z T, Cao Q E. Talanta, 2013, 105:124.
[10] Mitreva M, Dakova I, Karadjova I. Microchem J., 2017, 132:238.
[11] Cai X Q, Li J H, Zhang Z, Yang F F, Dong R C, Chen L X. ACS Appl. Mater. Interfaces, 2014, 6:305.
[12] Meouche W, Laatikainen K, Margaillan A, Silvonen T, Siren H, Sainio T, Beurroies I, Denoyel R, Branger C. Eur. Polym. J., 2017, 87:124.
[13] Zhu F, Li L W, Xing J D. J. Hazard. Mater., 2017, 321:103.
[14] Singh D K, Mishra S. Chromatographia, 2009, 70:1539.
[15] Monier M, Elsayed N H, Abdel-Latif D A. Polym. Int., 2015, 64:1465.
[16] Zhang Z, Li J H, Song X L, Ma J P, Chen L X. RSC Adv., 2014, 4:46444.
[17] Guney O, Atcakan E. J. Sol-Gel Sci. Technol., 2017, 81:534.
[18] Tarley C R T, Corazza M Z, de Oliveira F M, Somera B F, Nascentes C C, Segatelli M G. Microchem J., 2017, 131:57.
[19] Ahamed M E H, Mbianda X Y, Mulaba-Bafubiandi A F, Marjanovic L. Hydrometallurgy, 2013, 140:1.
[20] Zhu Y, Bai Z S, Luo W Q, Wang B J, Zhai L L. J. Chem. Technol. Biotechnol., 2017, 92:2009.
[21] Tabakli B, Topcu A A, Doker S, Uzun L. Ind. Eng. Chem. Res., 2015, 54:1816.
[22] Cankara S, Ozkutuk E B, Ozturk O, Ersoz A, Say R. Sep. Sci. Technol., 2016, 51:901.
[23] Tamahkar E, Bakhshpour M, Andac M, Denizli A. Sep. Purif. Technol., 2017, 179:36.
[24] Luo X B, Yu H Y, Xi Y, Fang L L, Liu L L, Luo J M. RSC Adv., 2017, 7:25811.
[25] Luo X B, Xi Y, Yu H Y, Yin X. C, Luo S L, Ind. Eng. Chem. Res., 2017, 56:2350.
[26] Luo X B, Zhong W P, Luo J M, Yang L X, Long J, Guo B, Luo S. L. J. Colloid Interface Sci., 2017, 492:146.
[27] Hashemi B, Shamsipur M, Seyedzadeh Z. New J. Chem., 2016, 40:4803.
[28] Li Y, Zhang J, Xu C, Zhou Y F. Sci. China-Chem. 2016, 59:95.
[29] Shamsipur M, Rajabi H R, Beyzavi M H, Sharghi H. Microchim. Acta, 2013, 180:791.
[30] Liu Y, Chen R, Yuan D D, Liu Z C, Meng M J, Wang Y, Han J, Meng X G, Liu F F, Hu Z Y, Guo W L, Ni L, Yan Y S. Colloid Polym. Sci., 2015, 293:109.
[31] Zhang L J, Cao L Q, Wang X H, Wang J D. Polym. Adv. Technol., 2012, 23:1174.
[32] Rao T P, Daniel S, Gladis J M. TrAC Trends Anal. Chem., 2004, 23:28.
[33] Rao T P, Kala R, Daniel S. Anal. Chim. Acta, 2006, 578:105.
[34] Mladenova E, Karadjova I, Tsalev D L. J. Sep. Sci., 2012, 35:1249.
[35] 傅骏青(Fu J Q), 王晓艳(Wang X Y), 李金花(Li J H), 陈令新(Chen L X). 化学进展(Progress in Chemistry), 2016, 28(1):83.
[36] Fu J Q, Chen L X, Li J H, Zhang Z. J. Mater. Chem. A, 2015, 3:13598.
[37] 朱琳琰(Zhu L Y), 张荣华(Zhang R H), 朱志良(Zhu Z L). 化学通报(Chemistry), 2010, 73(4):326.
[38] Mafu L D, Msagati T A M, Mamba B B.Environ. Sci. Pollut. R., 2013, 20:790.
[39] Gladis J M, Rao T P. Anal. Lett., 2003, 36, 2107.
[40] Ozkara S, Say R, Andac C, Denizli A. Ind. Eng. Chem. Res., 2008, 47:7849.
[41] Zhai Y H, Yang D, Chang X J, Liu Y W, He Q. J. Sep. Sci., 2008, 31:1195.
[42] Lai X Q, Hu Y L, Fu Y Q, Wang L L, Xiong J Y. J. Inorg. Organomet. Polym. Mater., 2012, 22:112.
[43] Luo F X, Huang S Y, Xiong X D, Lai X Q. RSC Adv., 2015, 5:67365.
[44] Pakade V E, Cukrowska E M, Darkwa J, Torto N, Chimuka L. Water S A, 2011, 37:529.
[45] Biju V M, Gladis J M, Rao T P. Talanta, 2003, 60:747.
[46] Kala R, Biju V M, Rao T P. Anal. Chim. Acta, 2005, 549:51.
[47] Metilda P, Gladis J M, Venkateswaran G, Rao T P. Anal. Chim. Acta, 2007, 587:263.
[48] Ardestani F, Hosseini M H, Taghizadeh M, Pourjavid M R, Rezaee M. J. Braz. Chem. Soc., 2016, 27:1279.
[49] Li H Z, Pei M S, Zhang J, Wei Q. Spectrosc. Spectr. Anal., 2011, 31:1472.
[50] Metilda P, Gladis J M, Rao T P. Anal. Chim. Acta, 2004, 512:63.
[51] Preetha C R, Gladis J M, Rao T P, Venkateswaran G. Environ. Sci. Technol., 2006, 40:3070.
[52] Rammika M, Darko G, Torto N. Water SA, 2012, 38:261.
[53] Ashouri N, Mohammadi A, Shekarchi M, Hajiaghaee R, Rastegar H. Desalin. Water Treat., 2015, 56:2135.
[54] Faghihian H, Adivi FG. Adsorpt. Sci. Technol., 2012, 30:205.
[55] Abu-Dalo M A, Salam A A, Nassory N S. Int. J. Electrochem. Sci., 2015, 10:6780.
[56] Ozkara S, Andac M, Karakoc V, Say R, Denizli A. J. Appl. Polym. Sci., 2011, 120:1829.
[57] Girija P, Beena M. Sep. Sci. Technol., 2014, 49:1053.
[58] Esen C, Andac M, Bereli N, Say R, Henden E, Denizli A. Mater. Sci. Eng. C-Mater. Biol. Appl., 2009, 29:2464.
[59] Asliyuce S, Bereli N, Uzun L, Onur M A, Say R, Denizli A. Sep. Purif. Technol., 2010, 73:243.
[60] Wang J J, Li X N. Ind. Eng. Chem. Res., 2013, 52:572.
[61] Wang J J, Liu F. Des. Monomers Polym., 2014, 17:19.
[62] Wang J J, Ding L, Wei J, Liu F. Appl. Surf. Sci., 2014, 305:412.
[63] Wang J J, Liu F. Chem. Eng. J., 2014, 242:117.
[64] Pinheiro S C L, Descalzo A B, Raimundo I M, Orellana G, Moreno-Bondi M C. Anal. Bioanal. Chem., 2012, 402:3253.
[65] Gladis J M, Rao T P. Microchim. Acta, 2004, 146:251.
[66] Kala R, Rao T P. J. Sep. Sci., 2006, 29:1281.
[67] Daniel S, Praveen R S, Rao T P. Anal. Chim. Acta, 2006, 570:79.
[68] Fayazi M, Ghanei-Motlagh M, Taher M A, Ghanei-Motlagh R, Salavati M R. J. Hazard. Mater., 2016, 309:27.
[69] Zambrzycka E, Roszko D, Lesniewska B, Wilczewska A Z, Godlewska-Zylkiewicz B. Spectroc. Acta Pt. B-Atom. Spectr., 2011, 66:508.
[70] Lesniewska B, Kosinska M, Godlewska-Zylkiewicz B, Zambrzycka E, Wilczewska A Z. Microchim. Acta, 2011, 175:273.
[71] Guo J J, Cai J B, Su Q D. J. Rare Earths, 2009, 27:22.
[72] Singh D K, Mishra S. Desalination, 2010, 257:177.
[73] Shirzadmehr A, Afkhami A, Madrakian T. J. Mol. Liq., 2015, 204:227.
[74] Wang J J, Li J. Polym. Bull., 2015, 72:2143.
[75] Ganjali M R, Alizadeh T, Azimi F, Larjani B, Faridbod F, Norouzi P. Int. J. Electrochem. Sci., 2011, 6:5200.
[76] Ng S M, Narayanaswamy R. Microchim. Acta, 2010, 169:303.
[77] Behbahani M, Taghizadeh M, Bagheri A, Hosseini H, Salarian M, Tootoonchi A. Microchim. Acta, 2012, 178:429.
[78] Quirarte-Escalante C A, Soto V, de la Cruz W, Porras G R, Manriquez R, Gomez-Salazar S. Chem. Mat., 2009, 21:1439.
[79] Tsoi Y K, Ho Y M, Leung K S Y. Talanta, 2012, 89:162.
[80] Segatelli M G, Santos V S, Presotto A B T, Yoshida I V P, Tarley C R T. React. Funct. Polym., 2010, 70:325.
[81] dos Santos Q O, Bezerra M A, Lima G D, Diniz K M, Segatelli M G, Germiniano T O, Santos V D, Tarley C R T. Quim. Nova, 2014, 37:63.
[82] Singh D K, Mishra S. Appl. Surf. Sci., 2010, 256:7632.
[83] Shirazifard P, Sadjadi S, Ahmadi S J, Faghihi F. Sep. Sci. Technol., 2016, 51, 248.
[84] Singh D K, Mishra S. J. Sci. Ind. Res., 2010, 69:767.
[85] Garcia R, Pinel C, Madic C, Lemaire M. Tetrahedron Lett., 1998, 39:8651.
[86] Pakade V E, Cukrowska E M, Darkwa J, Darko G, Torto N, Chimuka L. Water Sci. Technol., 2012, 65:728.
[87] Dam A H, Kim D J. J. Appl. Polym. Sci., 2008, 108:14.
[88] Alizadeh T, Sabzi R E, Alizadeh H. Talanta, 2016, 147:90.
[89] 谢志海(Xie Z H),张瑜(Zhang Y), 王海力(Wang H L), 王玲燕(Wang L Y), 滕晓晓(Teng X X). 功能材料(Funct. Mater.), 2014, 45:22060.
[90] Darroudi A, Zavar M H A, Chamsaz M, Zohuri G, Ashraf N. Anal. Methods, 2012, 4:3798.
[91] Zhao J C, Han B Zhang, Y F, Wang D D. Anal. Chim. Acta, 2007, 603:87.
[92] Zhai Y H, Liu Y W, Chang X J, Chen S B, Huang X P. Anal. Chim. Acta, 2007, 593:123.
[93] Buyuktiryaki S, Say R, Denizli A, Ersoz A. Talanta, 2007, 71:699.
[94] Ergun B, Baydemir G, Andac M, Yavuz H, Denizli A. J. Appl. Polym. Sci., 2012, 125:254.
[95] Prasad B B, Jauhari D, Verma A. Talanta, 2014, 120:398.
[96] Fasihi J, Alahyari S A, Shamsipur M, Sharghi H, Charkhi A. React. Funct. Polym., 2011, 71:803.
[97] Yilmaz V, Hazer O, Kartal S. Talanta, 2013, 116:322.
[98] Ersoz A, Say R, Denizli A. Anal. Chim. Acta, 2004, 502:91.
[99] Uygun M, Feyzioglu E, Ozcaliskan E, Caka M, Ergen A, Akgol S, Denizli A. J. Nanopart. Res., 2013, 15:1833.
[100] Abd-Rabboh H S M, Kamel A H. Electroanal., 2012, 24:1409.
[101] Luo X B, Liu L L, Deng F, Luo S L. J. Mater. Chem. A, 2013, 1:8280.
[102] Wu H G, Ju X J, Xie R, Liu Y M, Deng J G, Niu C H, Chu L Y. Polym. Adv. Technol., 2011, 22:1389.
[103] Shamsipur M, Besharati-Seidani A, Fasihi J, Sharghi H. Talanta, 2010, 83:674.
[104] Sarabadani P, Payehghadr M, Sadeghi M, Es'haghi Z, Soltani N, Rajabifar S. Appl. Radiat. Isot., 2014, 90:8.
[105] Long J, Luo X B A, Yin X C, Wu X. J. Environ. Chem. Eng., 2016, 4:4776.
[106] Laatikainen K, Udomsap D, Siren H, Brisset H, Sainio T, Branger C. Talanta, 2015, 134:538.
[107] Lenoble V, Laatikainen K, Garnier C, Angeletti B, Coulomb B, Sainio T, Branger C. Chem. Eng. J., 2016, 304:20.
[108] Karabork M, Ozkutuk E B, Ersoz A, Say R. Hacettepe J. Bio.Chem., 2010, 38:27.
[109] Hande P E, Samui A B, Kulkarni P S. Sens. Actuator B-Chem., 2017, 246:597.
[110] Ahmadi E, Gatabi J, Mohamadnia Z. Polimeros-Ciencia E Tecnologia, 2016, 26:242.
[111] Zhang T L, Yue, X D, Zhang K R, Zhao F Wang Y L, Zhang K. Hydrometallurgy, 2017, 169:599.
[112] Zhang T L, Yue X D, Zhang K R, Li J H, Zhu C Y, Zhang L, Chen W. Mater. Design, 2016, 107:372.
[113] Lesniewska B, Trzonkowska L, Zambrzycka E, Godlewska-Zylkiewicz B. Anal. Methods, 2015, 7:1517.
[114] Shakerian F, Dadfarnia S, Shabani A M H. Food Chem., 2012, 134:488.
[115] Arbab-Zavar M H, Chamsaz M, Zohuri G, Darroudi A. J. Hazard. Mater., 2011, 185:38.
[116] Kala R, Gladis J M, Rao T P. Anal. Chim. Acta, 2004, 518:143.
[117] Ramakrishnan K, Rao T P. Sep. Sci. Technol., 2006, 41:233.
[118] Prasad K, Kala R, Rao T P, Naidu G R K. Anal. Chim. Acta, 2006, 566:69.
[119] Biju V M, Gladis J M, Rao T P. Anal. Chim. Acta, 2003, 478:43.
[120] Krishna P G, Gladis J M, Rao T P, Naidu G R. J. Mol. Recognit., 2005, 18:109.
[121] 肖静水(Xiao J S), 刘慧君(Liu H J), 肖锡林(Xiao X L), 黄生力(Huang S L). 原子能科学技术(Atomic Energy Sci. Technol.), 2011, 45:267.
[122] 李路娟(Li L J), 刘慧君(Liu H J), 张磊(Zhang L). 化学通报(Chemistry), 2011, 74:539.
[123] Singh D K, Mishra S. Anal. Chim. Acta, 2009, 644:42.
[124] Bicim T, Yaman M. Spectrosc. Spectr. Anal., 2016, 36:1992.
[125] Rammika M, Darko G, Tshentu Z, Sewry J, Torto N. Water SA, 2011, 37:321.
[126] Jiang Y, Kim D J. Ind. Eng. Chem. Res., 2014, 53:13340.
[127] Godlewska-Zylkiewicz B, Lesniewska B, Wawreniuk I. Talanta, 2010, 83:596.
[128] Godlewska-Zylkiewicz B, Lesniewska B, Wilczewska A Z. Int. J. Environ. Anal. Chem., 2013, 93:483.
[129] Saraji M, Yousefi H. J. Hazard. Mater., 2009, 167:1152.
[130] Bahrami A, Besharati-Seidani A, Abbaspour A, Shamsipur M. Electrochim. Acta, 2014, 118:92.
[131] Bahrami A, Besharati-Seidani A, Abbaspour A, Shamsipur M. Mater. Sci. Eng. C-Mater. Biol. Appl., 2015, 48:205.
[132] Sadegh S, Mofrad A A. React. Funct. Polym., 2007, 67:966.
[133] Liu H, Kong D L, Sun W, Li Q S, Zhou Z Y, Ren Z Q. Chem. Eng. J., 2016, 303:348.
[134] Dakova I, Karadjova I, Georgieva V, Georgiev G. J. Sep. Sci., 2012, 35:2805.
[135] Dakova I, Karadjova I, Ivanov N, Georgieva V, Evtimova B, Georgiev G. Anal. Chim. Acta, 2007, 584:196.
[136] Lesniewska B, Godlewska-Zylkiewicz B, Wilczewska A Z. Microchem J., 2012, 105:88.
[137] Mishra S, Singh D K. Desalin. Water Treat., 2015, 56:1364.
[138] Zambrzycka E, Kiedysz U, Wilczewska A Z, Lesniewska B, Godlewska-Zykiewicz B. Anal. Methods, 2013, 5:3096.
[139] Ahmadi S J, Noori-Kalkhoran O, Shirvani-Arani S. J. Hazard. Mater., 2010, 175:193.
[140] Ashkenani H, Taher M A. Microchim. Acta, 2012, 178:53.
[141] Ashkenani H, Taher M A. J. Electroanal. Chem., 2012, 683:80.
[142] Ganjali H, Ganjali M R, Alizadeh T, Faridbod F, Norouzi P. Int. J. Electrochem. Sci., 2011, 6:6085.
[143] Rajabi H R, Razmpour S. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2016, 153:45.
[144] Shamsipur M, Rajabi H R, Pourmortazavi S M, Roushani M. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2014, 117:24.
[145] 解西京(Xie X J), 董静(Dong J), 王鹏程(Wang P C), 柳松(Liu S). 高校化学工程学报(J. Chem. Eng. Chin. Univ.), 2011, 25:682.
[146] Ashkenani H, Taher M A. Int. J. Environ. Anal. Chem., 2013, 93:1132.
[147] Bojdi M K, Behbahani M, Najafi M, Bagheri A, Omidi F, Salimi S. Electroanal., 2015, 27:2458.
[148] Zhiani R, Ghanei-Motlag M, Razavipanah I. J. Mol. Liq., 2016, 219:554.
[149] Yusoff M M, Mostapa N R N, Sarkar M S, Biswas T K, Rahman M L, Arshad S E, Sarjadi M S, Kulkarni A D. J. Rare Earths, 2017, 35:177.
[150] Mirzaei M, Hafezi M. J. Anal. Chem., 2017, 72:70.
[151] Trzonkowska L, Lesniewska B, Godlewska-Zylkiewicz B. React. Funct. Polym., 2017, 117:131.
[152] Kakavandi M G, Behbahani M, Omidi F, Hesam G. Food Anal. Meth., 2017, 10:2454.
[153] Ebrahimzadeh H, Behbahani M, Yaminib Y, Adlnasab L, Asgharinezhad A A. React. Funct. Polym., 2013, 73:23.
[154] Shamsipur M, Besharati-Seidani A. React. Funct. Polym., 2011, 71:131.
[155] Sarabadani P, Sadeghi M, Payehghadr M, Es'haghi Z. Anal. Methods, 2014, 6:741.
[156] Shamsipur M, Rajabi H R. Microchim. Acta, 2013, 180:243.
[157] Shamsipur M, Hashemi B, Dehdashtian S, Mohammadi M, Gholivand M B, Garau A, Lippolis V. Anal. Chim. Acta, 2014, 852:223.
[158] Rajabi H R, Shamsipur M, Pourmortazavi S M. Mater. Sci. Eng. C-Mater. Biol. Appl., 2013, 33:3374.
[159] Hashemi B, Shamsipur M, Javadi A, Rofouei M K, Shockravi A, Tajarrod N, Mandumya N. Anal. Methods, 2015, 7:9641.
[160] Roushani M, Abbasi S, Khani H. Environ. Monit. Assess., 2015, 187:601.
[161] Hashemi B, Shamsipur M. J. Sep. Sci., 2015, 38:4248.
[162] Roushani M, Beygi T M, Saedi Z. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2016, 153:637.
[163] Dakova I, Karadjova I, Georgieva V, Georgiev G. Talanta, 2009, 78:523.
[164] Zhu L Y, Zhu Z L, Zhang R H, Hong J, Qiu Y L. J. Environ. Sci., 2011, 23:1955.
[165] Kyzas G Z, Bikiaris D N. J. Mol. Liq, 2015, 212:133.
[166] Ozkahraman B, Acar I, Guclu K, Guclu G. Polym.-Plast. Technol. Eng., 2011, 50:216.
[167] Jiang Y, Kim D J. J. Nanosci. Nanotechnol., 2014, 14:8578.
[168] Singh D K, Mishra S. J. Hazard. Mater., 2009, 164:1547.
[169] Lu Y K, Yan X P. Anal. Chem., 2004, 76:453.
[170] Batlokwa B S, Chimuka L, Tshentu Z, Cukrowska E, Torto N. Water SA, 2012, 38:255.
[171] Kang C C, Li W M, Tan L, Li H, Wei C H, Tang Y W. J. Mater. Chem. A, 2013, 1:7147.
[172] 汪竹青(Wang Z Q), 沈玉永(Shen Y Y), 吴根华(Wu G H), 何池洋(He C Y). 分析化学(Anal. Chem.), 2009, 37:449.
[173] Buhani, Narsito, Nuryono, Kunarti E S. Desalination, 2010, 251:83.
[174] Wu J B, Zang S Y, Yi Y L. J. Sol-Gel Sci. Technol., 2013, 66:434.
[175] Gao Y M, Hu Z Y, Liu Y, Liu Z C, Chen R, Meng X G, Meng M J, Zhou C. Aust. J. Chem., 2015, 68:1051.
[176] Fu J Q, Wang X Y, Li J H, Ding Y J, Chen L X. RSC Adv., 2016, 6:44087.
[177] Tan J, Wang H F, Yan X P. Biosens. Bioelectron., 2009, 24:3316.
[178] Xu S F, Chen L X, Li J H, Guan Y F, Lu H Z. J. Hazard. Mater., 2012, 237:347.
[179] Zhang L, Yang S W, Han T, Zhong L L, Ma C L, Zhou Y Z, Han X L. Appl. Surf. Sci., 2012263:696.
[180] Liu H J, Yang F, Zheng Y M, Kang J, Qu J H, Chen J P. Water Res., 2011, 45:145.
[181] Liu Y H, Cao X H, Le Z G, Luo M B, Xu W Y, Huang G L. J. Braz. Chem. Soc., 2010, 21:533.
[182] Milja T E, Krupa V S, Rao T P. RSC Adv., 2014, 4:30718.
[183] Jia J, Wu A H, Luan S J. Phys. Chem. Chem. Phys., 2014, 16:16158.
[184] Rammika M, Darko G, Torto N. Water SA, 2011, 37:539.
[185] Li Y, Qiu T B, Xu X Y. Eur. Polym. J., 2013, 49:1487.
[186] Wang J J, Li J, Li H F, Ding L. Mater. Lett., 2014, 131:9.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[3] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[4] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[5] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[6] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[7] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[8] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[9] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[10] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[11] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[12] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[13] 姚温浩, 于飞, 马杰. 海藻酸盐复合凝胶吸附材料的合成及其在水处理中的应用[J]. 化学进展, 2018, 30(11): 1722-1733.
[14] 何晓燕*, 刘利琴, 王萌, 张彩芸, 张云雷, 王敏慧. 各向异性水凝胶的制备方法及性质研究[J]. 化学进展, 2017, 29(6): 649-658.
[15] 赵凤阳, 秘一芳, 安全福, 高从堦. 荷正电聚乙烯亚胺纳滤膜的制备与应用[J]. 化学进展, 2016, 28(4): 541-551.
阅读次数
全文


摘要

体离子印迹材料的制备方法