English
新闻公告
More
化学进展 2017, Vol. 29 Issue (12): 1518-1525 DOI: 10.7536/PC170804 前一篇   后一篇

• 综述 •

聚合物微针介导经皮给药的研究

赵笑, 李欣芳, 张鹏, 王幽香*   

  1. 浙江大学高分子科学与工程学系 教育部高分子合成与功能构造重点实验室 杭州 310027
  • 收稿日期:2017-08-11 修回日期:2017-10-20 出版日期:2017-12-15 发布日期:2017-11-15
  • 通讯作者: 王幽香,yx_wang@zju.edu.cn E-mail:yx_wang@zju.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(No.LY18E030001),国家自然科学基金项目(No.21474087)和国家国际科技合作专项(No.2015DFA51010)资助

Research of Polymeric Microneedles for Transdermal Drug Delivery

Xiao Zhao, Xinfang Li, Peng Zhang, Youxiang Wang*   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2017-08-11 Revised:2017-10-20 Online:2017-12-15 Published:2017-11-15
  • Supported by:
    The work was supported by the Natural Science Foundation of Zhejiang Province (No. LY18E030001), the National Natural Science Foundation of China (No.21474087), and International Science & Technology Cooperation Program of China (No.2015DFA51010).
皮肤角质层是药物经皮渗透的主要障碍,尤其是对大分子药物或亲水性药物分子,而微米尺寸的微针可以以微创的方式刺穿皮肤角质层,产生可逆的微孔道,促进药物渗透,进而克服传统药物经皮渗透率低的问题。同时,由于微针插入皮肤的深度有限,不触及皮下痛觉神经,可以避免引起疼痛。聚合物微针不仅具有足够的机械强度刺穿皮肤角质层,而且具有优异的生物相容性、载药量可调节范围大等特点,即使断裂在皮肤内,也不会产生安全问题。聚合物微针的众多优势使其在经皮传递药物方面具有广阔的前景,是当前经皮给药领域的研究热点。本文将从聚合物微针的种类、制备方法、经皮给药应用等方面详细综述聚合物微针的最新研究进展,并对这一领域的未来发展进行展望。
Stratum corneum, the protective barrier of the skin, is the principal obstacle for drugs to pass through the skin, especially macromolecular drugs or hydrophilic drugs. Micron-sized microneedles in transdermal drug delivery system can permeabilize the stratum corneum to promote the penetration of skin-impermeant drugs by creating reversible microchannels in the skin in a minimally invasive manner, which can overcome low permeability of traditional transdermal drug delivery system. What's more, percutaneous microneedle insertion can cause less or even no pain because it has limited insertion depth without touching nerves in the skin. Polymeric microneedles not only have sufficient strength to puncture the stratum corneum but also exhibit other outstanding performances such as biocompatibility and relatively lager drug loading capacity. It is safe even if polymeric microneedles rupture in the skin. Polymeric microneedles have so many advantages that they have an extensive prospect in transdermal drug delivery system, which has received abroad attention. In this paper, the recent advances of polymeric microneedles are reviewed in detail from the following aspects:microneedle types, manufacturing methods, and applications in transdermal drug delivery system. Challenges and prospects of polymeric microneedles are also discussed.
Contents
1 Introduction
2 Types of polymeric microneedles
3 Manufacturing methods of polymeric microneedles
4 Applications of polymeric microneedles in transdermal drug delivery system
4.1 Rapid drug release
4.2 Extended drug release
4.3 Stimuli-responsive drug release
5 Conclusion and outlook

中图分类号: 

()
[1] Lademann J. Journal of Biomedical Optics, 2013, 18:061201.
[2] Yu W J, Jiang G H, Liu D P, Li L, Chen H, Liu Y K, Huang Q, Tong Z Z, Yao J M, Kong X D. Materials Science and Engineering C, 2017, 71:725.
[3] Kim Y C, Park J H, Prausnitz M R. Advanced Drug Delivery Reviews, 2012, 64:1547.
[4] Larrañeta E, Mccrudden M T C, Courtenay A J, Donnelly R F. Pharmaceutical Research, 2016, 33:1055.
[5] Prausnitz M R, Langer R. Nature Biotechnology, 2008, 26:1261.
[6] Yang Y, Haripriya K, Banga A K. Pharmaceutics, 2011, 3:474.
[7] Anhuf D. Advanced Drug Delivery Reviews, 2004, 56:659.
[8] Glenn G M, Flyer D C, Ellingsworth L R, Frech S A, Frerichs D M, Seid R C, Yu J M. Expert Review of Vaccines, 2007, 6:809.
[9] Zhu Z Z, Luo H F, Lu W D, Luan H S, Wu Y B, Luo J, Wang Y J, Pi J X, Lim C Y, Wang H. Pharmaceutical Research, 2014, 31:3348.
[10] Yu W J, Jiang G H, Zhang Y, Liu D P, Xu B, Zhou J Y. Materials Science and Engineering C, 2017, 80:187.
[11] Gupta J, Gill H S, Andrews S N, Prausnitz M R. Journal of Controlled Release, 2011, 154:148.
[12] 朱凤(Zhu F), 金凡茂(Jin F M), 赵昱(Zhao Y), 余正勇(Yu Z Y), 胡园(Hu Y), 高鹏飞(Gao P F). 中国生化药物杂志(Chinese Journal of Biochemical Pharmaceutics), 2016, 36(8):149.
[13] Ling M H, Chen M C. Acta Biomaterialia, 2013, 9:8952.
[14] Lee I C, He J S, Tsai M T, Lin K C. Journal of Materials Chemistry B, 2014, 3:276.
[15] Chen M C, Lin Z W, Ling M H. ACS Nano, 2016, 10:93.
[16] Chen M C, Ling M H, Kusuma S J. Acta Biomaterialia, 2015, 24:106.
[17] Yang S X, Wu F, Liu J G, Fan G R, Welsh W, Zhu H, Jin T. Advanced Functional Materials, 2015, 25:4633.
[18] Donnelly R F, Singh T R, Garland M J, Migalska K, Majithiya R, McCrudden C M, Kole P L, Mahmood T M, McCarthy H O, Woolfson A D. Advanced Functional Materials, 2012, 22:4879.
[19] Larrañeta E, Lutton R E M, Woolfson A D, Donnelly R F. Materials Science & Engineering R Reports, 2016, 104:1.
[20] Lee K, Kim J D, Chang Y L, Song H, Jung H G. Biomaterials, 2011, 32:7705.
[21] Ke C J, Lin Y J, Hu Y C, Chiang W L, Chen K J, Yang W C, Liu H L, Fu C C, Sung H W. Biomaterials, 2012, 33:5156.
[22] Kim J D, Kim M, Yang H, Lee K, Jung H. Journal of Controlled Release, 2013, 170:430.
[23] Chen M C, Ling M H, Wang K W, Lin Z W, Lai B H, Chen D H. Biomacromolecules, 2015, 16:1598.
[24] Aoyagi S, Izumi H, Isono Y, Fukuda M, Ogawa H. Sensors & Actuators A Physical, 2007, 139:293.
[25] McAllister D V, Wang P M, Davis S P, Park J H, Canatella P J, Allen M G, Prausnitz M R. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100:13755.
[26] Vecchione R, Coppola S, Esposito E, Casale C, Vespini V, Grilli S, Ferraro P, Netti P A. Advanced Functional Materials, 2014, 24:3515.
[27] Han M, Hyun D H, Park H H, Lee S S, Kim C H, Kim C G. Journal of Micromechanics & Microengineering, 2007, 17:1184.
[28] Luangveera W, Jiruedee S, Mama W, Chiaranairungroj M, Pimpin A, PalagaT, Srituravanich W. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50:77.
[29] Choi S O, Kim Y C, Park J H, Hutcheson J, Gill H S, Yoon Y K, Prausnitz M R, Allen M G. Biomedical Microdevices, 2010, 12:263.
[30] Chu L Y, Prausnitz M R. Journal of Controlled Release, 2011, 149:242.
[31] Chen J M, Qiu Y Q, Zhang S H, Gao Y H. Drug Development and Industrial Pharmacy, 2016,42:890.
[32] Han M, Kim D K, Kang S H, Yoon H R, Kim B Y, Lee S S, Kim K D, Lee H G. Sensors & Actuators B Chemical, 2009, 137:274.
[33] Keum D H, Jung H S, Wang T, Shin M H, Kim Y E, Kim K H, Ahn G O, Hahn S K. Advanced Healthcare Materials, 2015, 4:1152.
[34] Lee K, Lee H C, Lee D S, Jung H. Advanced Materials, 2010, 22:483.
[35] Johnson A R, Caudill C L, Tumbleston J R, Bloomquist C J, Moga K A, Ermoshkin A, ShirvanyantsD, Mecham S J, Luft J C, DeSimone J M. PloS One, 2016, 11:e0162518.
[36] 肖云芳(Xiao Y F), 王博(Wang B), 林蓉(Lin R). 中国药学杂志(Chinese Pharmaceutical Journal), 2017, 52(2):89.
[37] 张海荣(Zhang H R), 鱼泳(Yu Y). 医疗卫生装备(Chinese Medical Equipment Journal), 2015, 36(3):118.
[38] Lim S H, Ng J Y, Kang L. Biofabrication, 2017, 9:015010.
[39] Zhu D D, Wang Q L, Liu X B, Guo X D. Acta Biomaterialia, 2016, 41:312.
[40] 洪燕龙(Hong Y L), 冯怡(Feng Y), 徐德生(Xu D S). 中国中药杂志(China Journal of Chinese Materia Medica), 2006, 31(1):15.
[41] Chen M C, Ling M H, Lai K Y, Pramudityo E. Biomacromolecules, 2012, 13:4022.
[42] Senel S. Advances in Polymer Science, 2011, 243:111.
[43] Koutsonanos D G, Martin M D P, Zarnitsyn V G, Sullivan S P, Compans R W, Prausnitz M R, Skountzou I. PloS One, 2009, 4:e4773.
[44] Al-Zahrani S, Zaric M, Mccrudden C, Scott C, Kissenpfennig A, Donnelly R F. Expert Opinion on Drug Delivery, 2012, 9:541.
[45] Chen M C, Huang S F, Lai K Y, Ling M H. Biomaterials, 2013, 34:3077.
[46] Li W Y, Liu Y J, Du J W, Ren K F, Wang Y X. Nanoscale, 2015, 7:8476.
[47] Zhang Q, Shen C A, Zhao N N, Xu F J. Advanced Functional Materials, 2017, 27:1606229.
[48] Tian Z Q, Yang C L, Wang W, Yuan Z. ACS Applied Materials & Interfaces, 2014, 6:17865.
[49] Chen L D, Xue Y N, Xia X Y, Song M F, Huang J, Zhang H, Yu B, Long S H, Liu Y P, Liu L, Huang S W, Yu F Q. Journal of Materials Chemistry B, 2015, 3:8949.
[50] Du J W, Zhang P, Zhao X, Wang Y X. Scientific Reports, 2017, 7:6064.
[51] Li S, Wu W, Xiu K M, Xu F J, Li Z M, Li J S. Journal of Biomedical Nanotechnology, 2014, 10:1480.
[52] Guo H, Wang W, Yang C L, Yuan Z. Journal of Controlled Release, 2013, 172:95.
[53] Liu L, Yu P, Zhang Y, Wu B, Cui C, Wu M, Wang C X, Zhuo R X, Huang S W. Journal of Controlled Release, 2015, 213:e67.
[54] Li W Y, Du J W, Zheng K, Zhang P, Hu Q L, Wang Y X. Chem. Commun., 2014, 50:1579.
[55] Ye Y Q, Yu J C, Wang C, Nguyen N Y, Walker G M, Buse J B, Gu Z. Advanced Materials, 2016, 28:3115.
[56] Yu J C, Zhang Y Q, Ye Y Q, DiSanto R, Sun W J, Ranson D, Ligler F S, Buse J B, Gu Z. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112:8260.
[57] Yu J C, Qian C G, Zhang Y Q, Cui Z, Zhu Y, Shen Q D, Ligler F S, Buse J B, Gu Z. Nano Letters, 2017, 17:733.
[58] Zhang Y Q, Yu J C, Wang J Q, Hanne N J, Cui Z, QianC G, Wang C, Xin H L, Cole J H, Gallippi C M, Zhu Y, Gu Z. Advanced Materials, 2017, 29:1604043.
[59] Yu J C, Zhang Y Q, Kahkoska A R, Gu Z. Current Opinion in Biotechnology, 2017, 48:28.
[60] Iliff J J, Alkayed N J, Gloshani K J, Traystman R J, West G A. Journal of Cerebral Blood Flow & Metabolism, 2005, 25, 1376.
[61] Di J, Yao S S, Ye Y Q, Cui Z, Yu J C, Ghosh T K, Zhu Y, Gu Z. ACS Nano, 2015, 9:9407.
[62] Hardy J G, Larrañeta E, Donnelly R F, McGoldrick N, Migalska K, McCrudden M T C, Irwin N J, Donnelly L, McCoy C P. Molecular Pharmaceutics, 2016, 13, 907.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
阅读次数
全文


摘要

聚合物微针介导经皮给药的研究