English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 439-447 DOI: 10.7536/PC170746 前一篇   后一篇

• 综述 •

石墨烯在复合热电材料中的应用

何新民1,2, 张婷1*, 陈飞1, 蒋俊3   

  1. 1. 北京石油化工学院材料科学与工程学院 北京 102617;
    2. 北京化工大学材料科学与工程学院 北京 100029;
    3. 中国科学院宁波材料技术与工程研究所 宁波 315201
  • 收稿日期:2017-08-01 修回日期:2017-11-29 出版日期:2018-04-15 发布日期:2018-02-11
  • 通讯作者: 张婷 E-mail:zting@bipt.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51501014)、北京市教育委员会科技计划一般项目(No.KM201610017005)、北京市组织部人才项目(No.2015000020124G062)和北京大学生研究训练计划(No.2017J00059)资助

Applications of Graphene in Composite Thermoelectric Materials

Xinmin He1,2, Ting Zhang1*, Fei Chen1, Jun Jiang3   

  1. 1. Department of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;
    2. Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received:2017-08-01 Revised:2017-11-29 Online:2018-04-15 Published:2018-02-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51501014), the Scientific and Technological Program of Beijing Municipal Education Commission (No. KM201610017005), the Talents Project of Beijing Municipal Organization Department (No. 2015000020124G062), and the Undergraduates Research Training Program of Beijing (No. 2017J00059).
热电材料是一种可以实现热能与电能之间直接相互转换的功能材料,在温差发电和热电制冷方面具有广阔的应用空间。石墨烯是一种单原子层厚度的二维碳材料,具有特殊的晶体结构和优异的物理化学性质。大量研究表明石墨烯优异的电学性能、超大的比表面积以及多样的边界结构有利于材料电、热性能的协同调控,使其在热电领域有较大的应用潜力。本文结合热电材料的性能特点,从石墨烯的结构与性能入手,综述了石墨烯自身作为热电材料时结构与性能的优化关系,并总结归纳了石墨烯与Bi2Te3、CoSb3等传统无机热电材料以及与导电高分子热电材料构成纳米复合块体和薄膜时,对材料结构与热电性能的影响,并结合现存的问题对石墨烯在热电领域中的应用进行了展望。
Thermoelectric materials are one kind of functional materials, which can realize the direct conversion between electrical energy and thermal energy, and have wide applications in the fields of thermoelectric power generation and refrigeration. Graphene is a two-dimensional carbon material of a single atomic layer with special crystal structure and excellent physical and chemical properties. Many research demonstrate that the excellent electrical performance, large surface and various boundary structures of graphene can optimize the electrical and thermal performance of materials, making graphene of great application potentials in the field of thermoelectrics. In this paper, based on the characteristics of thermoelectric materials and graphene, the relationship of structure and performance of graphene when graphene itself is researched as thermoelectric material is reviewed. The effect of graphene on the microstructure and performances of conventional inorganic thermoelectric materials and conducting polymer thermoelectric materials when graphene is used to form nanocomposites with these thermoelectric materials are also summarized. In addition, the exiting problems and further outlook of the applications of graphene in the field of thermoelectric are discussed.
Contents
1 Introduction
2 Structure and property of graphene
3 Thermoelectric performance of graphene itself
4 Application of graphene in other thermoelectrics as composite
4.1 Nanocomposites of graphene and conventional inorganic thermoelectrics
4.2 Nanocomposites of graphene and conductive polymer thermoelectrics
5 Conclusion

中图分类号: 

()
[1] Xi H X, Luo L G, Fraisse G. Renew. Sust. Energ. Rev., 2007, 11:923.
[2] Thirugnanasambandam M, Iniyan S, Goic R. Renew. Sust. Energ. Rev., 2010, 14:312.
[3] Omer A M. Renew. Sust. Energ. Rev., 2008, 12:2331.
[4] Qiu P F, Shi X, Chen L D. Energy Storage Materials, 2016, 3:85.
[5] Sales B C. Science, 2002, 295:1248.
[6] Bell L E. Science, 2008, 321:1457.
[7] Hébert S, Flahaut D, Martin C, Lemonnier S, Noudem J, Goupil C, Maignan A, Hejtmanek J. Prog. Solid State Chem., 2017, 35:457.
[8] Orr B, Akbarzadeh A, Mochizuki M, Singh R. Appl. Therm. Eng., 2016, 101:490.
[9] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T. Int. Mater. Rev., 2003, 48:45.
[10] Yang J H, Caillat T. MRS Bull., 2006, 31:224.
[11] Dai D, Zhou Y X, Liu J. Renew. Energ., 2011, 36:3530.
[12] Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G. Adv. Mater., 2010, 22:3970.
[13] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M. Nature, 2012, 489:414.
[14] Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, Chen G. Energ. Environ. Sci., 2011, 5:5147.
[15] Gaultois M W, Sparks T D, Borg C K H, Seshadri R, Bonificio W D, Clarke, D R. Chem. Mater., 2013, 25:2911.
[16] Tan G J, Zhao L D, Kanatzidis M G. Chem. Rev., 2016, 116:12123.
[17] May A F, Singh D J, Snyder G J. Phys. Rev. B, 2016, 79:897.
[18] Lan Y C, Minnich A J, Chen G, Ren Z F. Adv. Funct. Mater., 2010, 20:357.
[19] Tritt T M. Annu. Rev. Mater. Res., 2011, 41:433.
[20] 刘灰礼(Liu H L), 何颖(He Y), 史迅(Shi X), 郭向欣(Guo X X), 陈立东(Chen L D). 科学通报(Chinese Science Bulletin), 2013, 58(25):2603.
[21] Karamitaheri H, Neophytou N, Pourfath M, Faez R, Kosina H. J. Appl. Phys., 2012, 111:054501.
[22] 柏嵩(Bai S), 沈小平(Shen X P).化学进展(Progress in Chemistry), 2010, 22(11):2106.
[23] Lundeberg M B, Gao Y D, Woessner A, Tan C, Alonso-González P, Watanabe K, Taniguchi T, Hone J, Hillenbrand R, Koppens F H. Nat. Mater., 2017, 16:204.
[24] Dey A, Bajpai O P, Sikder A K, Chattopadhyay S, Khan M A S. Renew. Sust. Energ. Rev., 2016, 53:653.
[25] Geim A K. Science, 2009, 324:1530.
[26] Li D, Kaner R B. Science, 2008, 320:1170.
[27] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442:282.
[28] Katsnelson M I. Mater. Today, 2007, 10:20.
[29] Allen M J, Tung V C, Kaner R B. Chem. Rev., 2010, 110:132.
[30] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[31] Koskinen P, Malola S, Häkkinen H. Phys. Rev. B, 2009, 80:073401.
[32] Ouyang T, Chen Y P, Xie Y E, Yang K K, Zhong J X. Solid State Commun., 2010, 150:2366.
[33] Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438:201.
[34] Bolotin K I, Sikes K J, Jiang Z F, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Solid State Commun., 2008, 146:351.
[35] Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S. Nat. Nanotechnol., 2008, 3:206.
[36] Rao C N R, Sood A K, Voggu R, Subrahmanyam K S. J. Phys. Chem. Lett., 2010, 1:572.
[37] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22:3906.
[38] 康怡然(Kang Y R), 蔡锋(Cai F), 陈宏源(Chen H Y), 陈名海(Chen M H),张锐(Zhang R), 李清文(Li Q W).化学进展(Progress in Chemistry), 2014, 26(09):1562.
[39] Dragoman D, Dragoman M. Appl. Phys. Lett., 2007, 91:203116.
[40] Ouyang Y J, Guo J. Appl. Phys. Lett., 2009, 94:263107.
[41] Mazzamuto F, Nguyen V H, Apertet Y, Caer C, Chassat C, Martin J S, Dollfus P. Phys. Rev. B, 2011, 83:235426.
[42] Sevinçli H, Cuniberti G. Phys. Rev. B, 2010, 81:113401.
[43] Sevinçli H, Sevik C, Cagin T, Cuniberti G. Sci. Rep., 2013, 3:1228.
[44] Bae E J, Kang Y H, Lee C, Cho S Y. J. Mater. Chem. A, 2017, 5:17867.
[45] Wang T Z, Liu C C, Jiang F X, Xu Z F, Wang X D, Li X, Li C C, Xu J K, Yang X W. Phys. Chem. Chem. Phys., 2017, 19:17560.
[46] Wang L M, Bi H, Yao Q, Ren D D, Qu S Y, Huang F Q, Chen L D. Compos. Sci. Technol., 2017, 150:135.
[47] Xiong J H, Jiang F X, Shi H, Xu J K, Liu C C, Zhou W Q, Jiang Q L, Zhu Z Y, Hu Y J. ACS Appl. Mater. Interfaces, 2015, 7:14917.
[48] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[49] Agarwal K, Kaushik V, Varandani D, Dhar A, Mehta B R. J. Alloys Compd., 2016, 681:394.
[50] Li A H, Shahbazi M, Zhou S H, Wang G X, Zhang C, Jood P, Peleckis G, Du Y, Cheng Z X, Wang X L, Kuo Y K. Thin Solid Films, 2010, 518:e57.
[51] Liang B B, Song Z J, Wang M H, Wang L J, Jiang W. Journal of Nanomaterials, 2013, 210767.
[52] Ju H, Kim J H. Dalton Trans., 2015, 44:11755.
[53] Zhang T, Jiang J, Xiao Y K, Zhai Y B, Yang S H, Xu G J. ACS Appl. Mater. Interfaces, 2013, 5:3071.
[54] Feng B, Xie J, Cao G S, Zhu T J, Zhao X B. J. Mater. Chem. A, 2013, 1:13111.
[55] Dong J D, Liu W, Li H, Su X L, Tang X F, Uher C. J. Mater. Chem. A, 2013, 1:12503.
[56] Du Y, Shen S Z, Yang W D, Donelson R, Cai K F, Casey P S. Synth. Met., 2012, 161:2688.
[57] Ansari M O, Khan M M, Ansari S A, Amal I, Lee J, Cho M H. Mater. Lett., 2014, 114:159.
[58] Rahman A A A, Umar A A, Chen X M, Salleh M M, Oyama M. Appl. Phys. A, 2016, 122:133.
[1] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[6] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[7] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
[8] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[9] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[10] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[11] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[12] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[13] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[14] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[15] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
阅读次数
全文


摘要

石墨烯在复合热电材料中的应用