English
新闻公告
More
化学进展 2018, Vol. 30 Issue (4): 420-428 DOI: 10.7536/PC170745 前一篇   后一篇

• 综述 •

应用零价铁基材料还原和催化氧化降解多溴联苯醚

吴洋1,2, 王玉1,2, 仇荣亮1,2, 杨欣1,2*   

  1. 1. 中山大学环境科学与工程学院 广州 510275;
    2. 广东省环境污染控制与修复技术重点实验室 广州 510275
  • 收稿日期:2017-07-31 修回日期:2017-12-04 出版日期:2018-04-15 发布日期:2018-01-30
  • 通讯作者: 杨欣 E-mail:yangx36@mail.sysu.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(No.2015CB459000)和国家自然科学基金项目(No.21577178,21622706)资助

Reductive Debromination and Advanced Oxidation of Polybrominated Diphenyl Ethers(PBDEs) Using Zero-Valent Iron(ZVI) Based Materials

Yang Wu1,2, Yu Wang1,2, Rongliang Qiu1,2, Xin Yang1,2*   

  1. 1. School of Environmental Science & Technology, Sun Yat-sen University, Guangzhou 510275, China;
    2. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
  • Received:2017-07-31 Revised:2017-12-04 Online:2018-04-15 Published:2018-01-30
  • Supported by:
    The work was supported by the National Basic Research Program of China (No. 2015CB459000) and the National Natural Science Foundation of China (No. 21577178, 21622706).
多溴联苯醚(PBDEs)是一类新型的持久性有机污染物(POPs),由于不合理的使用和处置,在多种环境介质中均存在不同程度的污染。环境中PBDEs的降解技术已成为近年来的研究热点。大量的研究表明,零价铁(ZVI)还原脱溴降解PBDEs是一种高效快速且经济可行的治理技术。本文在总结国内外关于ZVI基材料降解PBDEs研究的基础上,分析了ZVI还原降解PBDEs的机理、动力学、影响因素及降解路径。从总体上看,ZVI作为高活性电子供体虽然能将高溴代PBDEs迅速降解为低溴代产物,但产生的低溴代PBDEs往往具有更大的环境风险,需进一步降解处理。近年来的研究表明,利用ZVI作为间接电子供体,通过催化活化H2O2或过硫酸盐产生高活性自由基,能够实现开环降解低溴代PBDEs。基于以上分析,通过构建一套先还原-后氧化的降解体系,有望实现高溴代PBDEs的彻底降解。最后,本文对ZVI降解PBDEs技术的后续研究进行了讨论和展望。
Polybrominated diphenyl ethers(PBDEs) are a group of persistent organic pollutants which have attracted a lot of concern because of their unreasonable use and disposal. Efforts have been paid to developing techniques to rapidly degrade PBDEs, among which the application of zero-valent iron(ZVI) has been found effective because of the reducibility and the ability of activating advanced oxidation processes(AOPs). In this paper, the research on degradation of PBDEs by ZVI are summarized, and the mechanism, kinetics, influencing factors and degradation pathways are reviewed. Although ZVI can be effectively used as direct electron donors for debromination of highly-brominated DEs, the resultant lower brominated DEs are more toxic and generally need further treatment. On the other hand, recent studies indicate ZVI could be used as indirect electron donors by inducing heterogeneous Fenton systems or persulfate(PS) systems to produce reactive oxygen species (ROS), which could degrade lower brominated DEs through ring opening. Therefore, the integration of ZVI and Fenton systems or persulfate systems by constituting two-stage reduction/subsequent oxidation treatment may be a solution for complete ring-opening degradation of highly-brominated DEs. Besides, further research on PBDEs degradation based on ZVI technology is discussed.
Contents
1 Introduction
2 Mechanism of PBDEs reductive debromination by ZVI
2.1 Mechanism of PBDEs reduction by ZVI
2.2 Mechanism of PBDEs reduction by bimetallic systems
2.3 Products and pathways of PBDEs debromination in ZVI reaction system
3 PBDEs reductive debromination by modified-ZVI
3.1 nZVI
3.2 Surface stabilized-nZVI
4 Kinetics of PBDEs reductive debromination
5 Influencing factors of PBDEs reductive debromination
5.1 pH
5.2 Organic matters
5.3 Metal cation
6 Reduction and advanced oxidation of PBDEs based on ZVI
7 Conclusion

中图分类号: 

()
[1] Lyche J L, Rosseland C, Berge G, Polder A. Environ. Int., 2015, 74:170.
[2] Law R J, Covaci A, Harrad S, Herzke D, Abdallah M, Femie K, Toms L, Takigami H. Environ. Int., 2014, 65:147.
[3] Lake L R, Foxall C D, Fernandes A, Lewis M, Rose M, White O, Dowding A. Environ. Sci. Technol., 2011, 45:5017.
[4] Wu J P, Luo X J, Zhang Y, Chen S J, Mai B X, Guan Y T, Yang Z Y. Environ. Sci. Technol., 2009, 43:5212.
[5] Pan Y H, Tsang D C W, Wang Y Y, Li Y, Yang X. Chem. Eng. J., 2016, 297:74.
[6] Dingemans M M L, Berg M, Westerink R H S. Environ. Health. Persp., 2011, 119:900.
[7] Keum Y S, Li Q X. Environ. Sci. Technol., 2005, 39:2280.
[8] Santos M S F, Alves A, Madeira L M. Water. Res., 2016, 88:39.
[9] Altarawneh M, Dlugogorski B Z. Environ. Sci. Technol., 2013, 47:5118.
[10] Xiong X M, Sun B, Zhang J, Gao N Y, Shen J M, Li J L, Guan X H. Water. Res., 2014, 62:53.
[11] Li B Z, Zhu J. Chem. Eng. J., 2014, 255:225.
[12] Upadhyayula V K, Deng S G, Mitchell M C, Smith G B. Sci. Total. Environ., 2009, 408:1.
[13] Matheson L J, Tratnyek P G. Environ. Sci. Technol., 1994, 28:2045.
[14] Boronina T N, Lagadic I, Sergeev G B, Klabunde K J. Environ. Sci. Technol., 1998, 32:2614.
[15] Boronina T, Klabunde K J, Sergeev G. Environ. Sci. Technol., 1995, 29:1511.
[16] O'Loughlin E J, Kemner K M, Burris D R. Environ. Sci. Technol., 2003, 37:2905.
[17] Doong R A, Wu S C. Chemosphere, 1992, 24:1063.
[18] Sun Y K, Li J X, Huang T L, Guan X H. Water. Res., 2016, 100:277.
[19] O'Carroll D, Sleep B, Krol M, Boparai H, Kocur C. Adv. Water Resour., 2013, 51:104.
[20] Chun C L, Baer D R, Matson D W, Amonette J E, Penn R L. Environ. Sci. Technol., 2010, 44:5079.
[21] Liou Y H, Lo S L, Lin C J, Kuan W H, Weng S C. J. Hazard Mater., 2005, 127:102.
[22] Stefaniuk M, Oleszczuk P, Ok Y S. Chem. Eng. J., 2016, 287:618.
[23] Yan W, Lien H L, Koel B E, Zhang W X. Environ. Sci-Proc. Imp., 2013, 15:63.
[24] Zhuang Y A, Jin L T, Luthy R G. Chemosphere, 2012, 89:426.
[25] Fang Z Q, Qiu X H, Chen J H, Qiu X Q. J. Hazard Mater., 2011, 185:958.
[26] Ni S Q, Yang N. J. Colloid Interf. Sci., 2014, 420:158.
[27] Xie Y Y, Fang Z Q, Cheng W, Tsang P E, Zhao D Y. Sci. Total. Environ., 2014, 485:363.
[28] Tan L, Liang B, Cheng W, Fang Z Q, Tsang E P. Environ. Sci. Pollut. Res., 2016, 23:22172.
[29] Liu Z T, Gu C G, Ye M, Bian Y R, Cheng Y W, Wang F, Yang X L, Song Y, Jiang X. J. Hazard Mater., 2015, 298:328.
[30] Zhuang Y A, Ahn S, Seyfferth A L, Masue S Y, Fendorf S, Luthy R G. Environ. Sci. Technol., 2011, 45:4896.
[31] Lv Y C, Zhang Z, Chen Y C, Hu Y Y. Chem. Eng. J., 2016, 289:382.
[32] Luo S, Yang S G, Sun C, Gu J D.Sci. Total. Environ., 2012, 429:300.
[33] Luo S, Yang S G, Xue Y G, Liang F, Sun C. J. Hazard Mater., 2011, 192:1795.
[34] Yang F, Li Q Q, Su G J, Huang X C, Li B K, Zhao Y H, Miao X, Zheng M H. Chemosphere, 2016, 150:445.
[35] Zhuang Y A, Ahn S, Luthy R G. Environ. Sci. Technol., 2010, 44:8236.
[36] Li A, Tai C, Zhao Z S, Wang Y W, Zhang Q H, Jiang G B, Hu J T. Environ. Sci. Technol., 2007, 41:6841.
[37] Shih Y H, Tai Y T. Chemosphere, 2010, 78:1200.
[38] Hu J W, Zhuang Y, Luo J, Wei X H, Huang X F. Int. J. Mol. Sci., 2012, 13:9332.
[39] Qiu X H, Fang Z Q, Liang B, Gu F L, Xu Z C. J. Hazard Mater., 2011, 193:70.
[40] Xu F Y, Deng S B, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G. Environ. Sci. Technol., 2012, 46:4576.
[41] Fang Z Q, Qiu X H, Chen J H, Qiu X Q. Desalination, 2011, 267:34.
[42] Wang R, Lu G N, Lin H Z, Huang K B, Tang T, Xue X L, Yang X J, Yin H, Dang Z. Environ. Pollut., 2017, 222:331.
[43] 杨雨寒(Yang Y H), 徐伟伟(Xu W W), 彭思侃(Peng S K), 卢善富(Lu S F), 相艳(Xiang R), 梁大为(Liang D W). 环境科学(Environmental Science), 2014, 35(3):964.
[44] 邱心泓(Qiu X H), 方战强(Fang Z Q). 化学进展(Progress in Chemistry), 2010, 22(02/03):291.
[45] Liu W J, Qian T T, Jiang H. Chem. Eng. J., 2014, 236:448.
[46] Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50:7290.
[47] Li L Y, Hu J W, Shi X D, Fan M Y, Luo J, Wei X H. Environ. Sci. Pollut. R., 2016, 23:17880.
[48] Zhao X, Liu W, Cai Z Q, Han B, Qian T W, Zhao D Y. Water Res., 2016, 100:245.
[49] He F, Zhao D Y, Liu J C, Roberts C B. Ind. Eng. Chem. Res., 2007, 46:29.
[50] He F, Zhao D Y. Environ. Sci. Technol., 2005, 39:3314.
[51] 庞龙(Pang L), 周庆祥(Zhou Q X), 苏现伐(Su X F). 化工进展(Chem. Ind. Eng. Prog.), 2011, 30(6):1361.
[52] Liang D W, Yang Y H, Xu W W, Peng S K, Lu S F, Xiang Y. J. Hazard Mater., 2014, 278:592.
[53] Chang C, Lian F, Zhu L Y. Environ. Pollut., 2011, 159:2507.
[54] Shukla P R, Wang S B, Sun H Q, Ang H M, Tade M. Appl. Catal. B-Environ., 2010, 100:529.
[55] Fan M D, Yuan P, Chen T H, He H P, Yuan A H, Chen K M, Zhu J X, Liu D. Chin. Sci. Bull., 2010, 55:1092.
[56] Fan M D, Yuan P, Zhu J X, Chen T H, Yuan A H, He H P, Chen K M, Liu D. J. Magn. Magn. Mater., 2009, 321:3515.
[57] Zhang X, Lin S, Chen Z L, Megharaj M, Naidu R. Water Res., 2011, 45:3481.
[58] Tan L, Lu S Y, Fang Z Q, Cheng W, Tsang E P. Appl. Catal. B-Environ., 2017, 200:200.
[59] Yu K, Gu C, Boyd S A, Liu C, Sun C, Teppen B J, Li H. Environ. Sci. Technol., 2012, 46:8969.
[60] Pang Z H, Yan M Y, Jia X S, Wang Z X, Chen J Y. J. Environ. Sci-China, 2014, 26:483.
[61] Fu R B, Xu Z, Peng L, Bi D S. Environ. Sci. Pollut. Res., 2016, 23:23983.
[62] Wu J, Yi Y Q, Li Y Q, Fang Z Q, Tsang E P. J. Hazard Mater., 2016, 320:341.
[63] Wang L C, Ni S Q, Guo C L, Qian Y T. J. Mater. Chem. A, 2013, 1:6379.
[64] Xie Y Y, Cheng W, Tsang P E, Fang Z Q. J. Environ. Manage., 2016, 166:478.
[65] Peng Y H, Chen M K, Shih Y H. J. Hazard Mater., 2013, 260:844.
[66] Tan L, Liang B, Fang Z Q, Xie Y Y, Tsang E P. J. Nanopart. Res., 2014, 16:2786.
[67] Cai Y L, Liang B, Fang Z Q, Xie Y Y, Tsang E P. Front. Env. Sci. Eng., 2015, 9:879.
[68] Fu F L, Dionysiou D D, Liu H. J. Hazard Mater., 2014, 267:194.
[69] Li X Q, Zhang W X. J. Phys. Chem. C, 2007, 111:6939.
[70] Karabelli D, Uzum C, Shahwan T, Eroglu A E, Scott T B, Hallam K R, Lieberwirth I. Ind. Eng. Chem. Res., 2008, 47:4758.
[71] 明磊强(Ming L Q), 何义亮(He Y L), 章敏(Zhang M), 许振成(Xu Z C), 张小凡(Zhang X F). 净水技术(Water Purif. Technol.), 2010, 29(2):49.
[72] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42:1262.
[73] Su Y F, Hsu C Y, Shih Y H. Chemosphere, 2012, 88:1346.
[74] Kim E J, Kim J H, Kim J H, Bokare V, Chang Y S. Sci. Total Environ., 2014, 470:1553.
[75] Zhou J, Chen J W, Liang C H, Xie Q, Wang Y N, Zhang S Y, Qiao X L, Li X H. Environ. Sci. Technol., 2011, 45:4839.
[76] Huang A Z, Wang N, Lei M, Zhu L H, Zhang Y Y, Lin Z F, Yin D Q, Tang H Q. Environ. Sci. Technol., 2013, 47:518.
[77] Huang A Z, Zhang Z M, Wang N, Zhu LH, Zou J. J. Hazard Mater., 2016, 302:158.
[78] Bastos P M, Eriksson J, Vidarson J, Bergman A. Environ. Sci. Pollut. Res., 2008, 15:606.
[79] Shi J Q, Qu R J, Feng M B, Wang X H, Wang L S, Yang S G, Wang Z Y. Environ. Sci. Technol., 2015, 49:4209.
[80] Cao H J, He M X, Han D D, Sun Y H, Zhao S F, Ma H J, Yao S D. Comput. Theor. Chem., 2012, 983:31.
[81] Cao H J, He M X, Han D D, Sun Y H, Xie J. Atmos. Environ., 2011, 45:1525.
[82] Cao H J, He M X, Han D D, Li J, Li M Y, Wang W X, Yao S D. Environ. Sci. Technol., 2013, 47:8238.
[83] Wang Y, Chen S Y, Yang X, Huang X F, Yang Y H, He E K, Wang S, Qiu R L. Chem. Eng. J., 2017, 317:613.
[1] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[2] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[3] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[4] 顾凯丽, 李浩贞, 张晋华, 李锦祥. 硫化零价铁去除水中污染物的效能及交互机制[J]. 化学进展, 2021, 33(10): 1812-1822.
[5] 王舒畅, 宋亚丹, 孙远奎. 碳基材料修饰零价铁去除污染物的效能与机理[J]. 化学进展, 2019, 31(2/3): 422-432.
[6] 范淑芬, 辛佳, 黄静怡, 荣伟莉, 郑西来. 基于零价铁的地下水化学还原修复体系中的电子转移有效性和电子竞争机制[J]. 化学进展, 2018, 30(7): 1035-1046.
[7] 赵玉坤, 汪园园, 籍宏伟, 马万红, 陈春城*, 赵进才*. 多溴联苯醚的光催化还原脱溴[J]. 化学进展, 2017, 29(9): 911-918.
[8] 王艳龙, 林道辉*. 纳米零价铁与土壤组分的相互作用及其环境效应[J]. 化学进展, 2017, 29(9): 1072-1081.
[9] 杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 水环境中ZVI/氧化剂体系及其电子迁移作用机制[J]. 化学进展, 2017, 29(4): 388-399.
[10] 邱心泓 方战强. 修饰型纳米零价铁降解有机卤化物的研究*[J]. 化学进展, 2010, 22(0203): 291-297.
[11] 张帆,余应新,张东平,吴明红,盛国英,傅家谟. 溴系阻燃剂在环境及人体中的存在和代谢转化*[J]. 化学进展, 2009, 21(6): 1364-1372.
[12] 罗孝俊,麦碧娴,陈社军. PBDEs研究的最新进展*[J]. 化学进展, 2009, 21(0203): 359-368.
[13] 赵丹,孙春燕,陈春城,马万红,赵进才. 新型污染物多溴联苯醚和氰尿酸的光化学降解*[J]. 化学进展, 2009, 21(0203): 400-405.
[14] 方磊,黄俊,余刚. 多溴联苯醚光化学降解*[J]. 化学进展, 2008, 20(0708): 1180-1186.
[15] 刘汉霞,张庆华,江桂斌,蔡宗苇. 多溴联苯醚及其环境问题[J]. 化学进展, 2005, 17(03): 554-562.