English
新闻公告
More
化学进展 2017, Vol. 29 Issue (12): 1462-1470 DOI: 10.7536/PC170742 前一篇   后一篇

• 综述 •

三齿配位钛配合物催化烯烃聚合

袁世芳1,2,3*, 王丽静1,2, 张秋月2,3, 孙文华3*   

  1. 1. 山西大学应用化学研究所 太原 030006;
    2. 山西大学化学化工学院 太原 030006;
    3. 中国科学院化学研究所工程塑料重点实验室 北京 100190
  • 收稿日期:2017-07-25 修回日期:2017-09-23 出版日期:2017-12-15 发布日期:2017-11-06
  • 通讯作者: 袁世芳,whsun@iccas.ac.cn;孙文华,yuansf@sxu.edu.cn E-mail:whsun@iccas.ac.cn;yuansf@sxu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21101101,U1362204)和山西大学大型科学仪器中心资助

Tridentate Titanium Precatalysts Toward Olefin Polymerization

Shifang Yuan1,2,3*, Lijing Wang1,2, Qiuyue Zhang2,3, Wenhua Sun3*   

  1. 1. Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China;
    2. School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
    3. Key Laboratory of Engineering Plastics, lnstitute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2017-07-25 Revised:2017-09-23 Online:2017-12-15 Published:2017-11-06
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21101101, U1362204) and the Scientific Instrument Center of Shanxi University.
钛基聚烯烃催化剂不仅满足了价廉和性质优良的聚烯烃生产,而且有望进一步提升聚烯烃品质和发展新型聚烯烃树脂,因而结构可控钛配合物催化剂设计合成与催化性能提升是聚烯烃研究的核心课题之一。在茂金属催化剂之外,多齿配体的钛配合物成为研究的热点,其中,三齿配体良好地稳定了钛配合物。与此同时,配位原子的多样化极大地丰富了配合物合成与催化活性调控,在控制聚合活性的同时改善了所得聚合物的微观结构和宏观性能。本综述集中讨论了近年来在烯烃聚合催化体系中三齿配位钛配合物新研究的进展,讨论了取代基对于配合物中电子效应和立体效应的影响,以及配合物结构变化对于烯烃聚合活性及所得聚合物性能的影响关系,相关结果有助于指导钛配合物设计合成和催化聚合规律的研究。
Titanium-based catalysts have been not only providing major catalyses in conventionally producing massive polyolefins with low cost as well as good properties, but also advancing the properties of new polyolefins for new plastic materials. Therefore it has been a core consideration of finely tuning the structures of titanium complexes and enhancing catalytic performances of the olefin polymerization. Besides metallocene catalysts, titanium complexes bearing multi-dentate ligands have been maintained as hot topics, in which tridentate ligands positively stabilize titanium complexes. Meanwhile variations of coordination atoms of those ligands greatly enrich the syntheses and manipulation of the catalytic activity of complexes, therefore controlling the polymerization activity as well as improving the microstructures and properties of resultant polyolefin materials. Herein the recent progress of titanium complexes bearing tridentate ligands have been reviewed toward olefin polymerization, focusing on the electronic and steric influences of substituents within ligands on their catalytic activities and properties of resultant polyolefins. The observations would be helpful to design titanium complexes and correlations between activities of complexes and structures of ligands used.
Contents
1 Introduction
2 Titanium complexes
2.1 Half-titanocene complexes
2.2 Cp-containing Schiff-base titanium complexes
2.3 Complexes based on C, N, X imine ligands
2.4 Complexes based on O, P, N imine ligands
2.5 Complexes based on O, S, N imine ligands
2.6 Complexes based on O, N, N imine ligands
2.7 Complexes based on O, N, O imine ligands
2.8 Complexes based on N, C, N imine ligands
2.9 Complexes based on N, N, S imine ligands
2.10 Bis(aryloxide)s with one additional donors
2.11 Bis(aryloxide)s with two additional donors
2.12 Complexes with other ligands
3 Conclusion

中图分类号: 

()
[1] Peng D Q, Yan X W, Yu C, Zhang S W, Li X F. Polym. Chem., 2016, 7:2601.
[2] Redshaw C, Tang Y. Chem. Soc. Rev., 2012, 41:4484.
[3] 袁世芳(Yuan S F),牛春霞(Niu C X),魏学红(Wei X H),孙文华(Sun W H).化学进展(Progress in Chemistry), 2016, 28(7):1070.
[4] 黄伟(Huang W),张文娟(Zhang W J),孙文华(Sun W H).高分子通报(Chinese Polymer Bulletin), 2011, 63.
[5] 左伟伟(Zuo W W),孙文华(Sun W H).高分子通报(Chinese Polymer Bulletin), 2009, (04):1.
[6] Makio H, Terao H, Iwashita A, Fujita T. Chem. Rev., 2011, 111:2363.
[7] Nomura K, Zhang S. Chem. Rev., 2011, 111:2342.
[8] Wu J Q, Li Y S. Coord. Chem. Rev., 2011, 255:2303.
[9] Jonas Z. Coord. Chem. Rev., 2010, 254:2227.
[10] Nakata N, Toda T, Ishii A. Polym. Chem., 2011, 2:1597.
[11] Huang Q C, Qian Y L, Li G S, Tang Y Q. Transition Met. Chem., 1990, 15:483.
[12] Flores J C, Chien J C W, Rausch M D. Organometallics, 1994, 13:4140.
[13] Blais M S, Chien J C W, Rausch M D. Organometallics, 1998, 17:3775.
[14] Amor F, Butt A, du Plooy K E, Spaniol T P, Okuda J. Organometallics, 1998, 17:5836.
[15] Cano J, Royo P, Lanfranchi M,Pellinghelli M A, Tiripicchio A. Angew. Chem. Int. Ed., 2001, 40:2495.
[16] Huang J L, Lian B, Qian Y L, Zhou W Z, Chen W, Zheng G. Macromolecules, 2002, 35:4871.
[17] Zhang J, Lin Y J, Jin G X. Organometallics, 2007, 26:4042.
[18] Huang W, Li B X, Wang Y H, Zhang W J, Wang L, Li Y S, Sun W. H, Redshaw C. Catal. Sci. Technol., 2011, 1:1208.
[19] Huang W, Sun W H, Redshaw C. Dalton Trans., 2011, 40:6802.
[20] Tam K H, Lo J C Y, Guo Z Q, Chan M C W. J. Organomet. Chem., 2007, 692:4750.
[21] Lo J C Y, Chan M C W, Lo P, K Lau K C, Ochiai T, Makio H. Organometallics, 2013, 32:449.
[22] McGuinness D S, Gibson V C, Steed J W. Organometallics, 2004, 23:6288.
[23] Hu W G, Sun X L, Wang C, Gao Y, Tang Y, Shi L P, Xie W, Sun J, Dai H L, Li X Q, Yao X L, Wang X R. Organometallics, 2004, 23:1684.
[24] Chen Z, Li J F, Tao W J, Sun X L, Yang X H, Tang Y. Macromolecules, 2013, 46:2870.
[25] Wan D W, Chen Z, Gao Y S, Shen Q, Sun X L, Tang Y. J. Polym. Sci., Part A:Polym. Chem., 2013, 51:2495.
[26] Wang C, Sun X L, Guo Y H, Gao Y, Liu B, Ma Z, Xia W, Shi L P, Tang Y. Macromol. Rapid Commun., 2005, 26:1609.
[27] Wang C, Ma Z, Sun X L, Gao Y, Guo Y H, Tang Y, Shi L P. Organometallics, 2006, 25:3259.
[28] Yang X H, Liu C R, Wang C, Sun X L, Guo Y H, Wang X K, Wang Z, Xie Z, Tang Y. Angew. Chem. Int. Ed., 2009, 48:8099.
[29] Gao M L, Wang C, Sun X L, Qian C T, Ma Z, Bu S Z, Tang Y, Xie Z W. Macromol. Rapid Commun., 2007, 28:1511.
[30] Gao M L, Sun X L, Gu Y F, Yao X L, Li C F, Bai J Y, Wang C, Ma Z, Tang Y, Xie Z, Bu S Z, Qian C T. J. Polym. Sci., Part A:Polym. Chem., 2008, 46:2807.
[31] Gao M L, Gu Y F, Wang C, Yao X L, Sun X L, Li C F, Qian C T, Liu B, Ma Z, Tang Y, Xie Z, Bu S Z, Gao Y. J. Mol. Catal. A:Chem., 2008, 292:62.
[32] Paolucci G, Zanella A, Sperni L, Bertolassi V, Mazzeo M, Pellecchia C. J. Mol. Catal. A:Chem., 2006, 258:275.
[33] Huang W, Zhang W J, Liu S F, Liang T L, Sun W H, J. Polym. Sci., Part A:Polym. Chem., 2011, 49:1887.
[34] Yan Q, Yang W H, Chen L Q. Wang L, Redshaw C, Sun W H. J. Organomet. Chem., 2014, 753:34.
[35] Owiny D, Parkin S, Ladipo F T. J. Organomet. Chem., 2003, 678:134.
[36] Cariou R, Gibson V C, Tomov A K, White A J P. J. Organomet. Chem., 2009, 694:703.
[37] Wang Y H, Zhang W J, Huang W, Wang L, Redshaw C, Sun W H. Polymer, 2011, 52:3732.
[38] Wan L, Zhang D, Wang Q R, Chen Z X, Weng L H. J. Organomet. Chem., 2013, 724:155.
[39] Suzuki Y, Kinoshita S, Shibahara A, Ishii S, Kawamura K, Inoue Y, Fujita T. Organometallics, 2010, 29:2394.
[40] Audouin H, Bellini R, Magna L, Mézailles N, Olivier-Bourbigou H. Eur. J. Inorg. Chem., 2015, 2015:5272.
[41] Chuchuryukin A V, Huang R B, Lutz M, Chadwick J C, Spek A L, van Koten G. Organometallics, 2011, 30:2819.
[42] Chuchuryukin A V, Huang R B, van Faassen E E, van Klink G P M, Lutz M, Chadwick J C, Spek A L, van Koten G. Dalton Trans., 2011, 40:8887.
[43] Li W, Su F, Yuan S F, Duan X E, Bai S D, Liu D S. RSC Adv., 2016, 6:40741.
[44] Jia A Q, Wang J Q, Hu P, Jin G X. Dalton Trans., 2011, 40:7730.
[45] Lee C S, Park J H, Wang E Y, Park G H, Go M J, Lee J, Lee B Y. J. Organomet. Chem., 2014, 772/773:172.
[46] Chan M C W, Tam K H, Pui Y L, Zhu N Y. J. Chem. Soc., Dalton Trans., 2002, 16(16):3085.
[47] Chan M C W, Kai S C F, Cole J M, McIntyre G J, Matsui S, Zhu N Y, Tam K H. Chem.-Eur. J., 2006, 12:2607.
[48] Kirillov E, Roisnel T, Razavi A, Carpentier J F. Organometallics, 2009, 28:5036.
[49] Mack H, Eisen M S. J. Chem. Soc., Dalton Trans., 1998, 37(6):917.
[50] Aihara H, Matsuo T, Kawaguchi H. Chem. Commun., 2003, 9(17):2204.
[51] Hanaoka H, Imamoto Y, Hino T, Oda Y. J. Organomet. Chem., 2006, 691:4968.
[52] Tshuva E Y, Goldberg I, Kol M, Goldschmidt Z. Inorg. Chem. Commun., 2000, 3:611.
[53] Tshuva E Y, Goldberg I, Kol M, Goldschmidt Z. Chem.Commun., 2001, 2120.
[54] Groysman S, Goldberg I, Kol M, Genizi E, Goldschmidt Z. Inorg. Chim. Acta, 2003, 345:137.
[55] Groysman S, Tshuva E Y, Goldberg I, Kol M, Goldschmidt Z, Shuster M. Organometallics, 2004, 23:5291.
[56] Segal S, Goldberg I, Kol M. Organometallics, 2005, 24:200.
[57] Cohen A, Kopilov J, Lamberti M, Venditto V, Kol M. Macromolecules, 2010, 43:1689.
[58] Obuah C, Omondi B, Nozaki K, Darkwa J. J. Mol. Catal. A:Chem., 2014, 382:31.
[59] Press K, Cohen A, Goldberg I, Venditto V, Mazzeo M, Kol M. Angew. Chem., Int. Ed., 2011, 50:3529.
[60] Wang W, Fujiki M, Nomura K. Macromol. Rapid Commun.,2004, 25:504.
[1] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.
[2] 曲树璋, 张韬毅, 王伟. 氮配位单茂金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(7): 929-938.
[3] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[4] 袁世芳, 牛春霞, 魏学红, 孙文华. ⅣB金属配合物催化烯烃聚合与共聚[J]. 化学进展, 2016, 28(7): 1070-1075.
[5] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[6] 王魁, 雷金化, 聂赫然, 周光远. 受限空间下的烯烃聚合研究[J]. 化学进展, 2015, 27(12): 1764-1773.
[7] 刘宁, 王旭珍*, 徐文亚, 郭德才, 汤济洲, 张宝禄. 纳/微米二硫化钼的化学制备及其催化加氢脱硫应用[J]. 化学进展, 2013, 25(05): 726-734.
[8] 王定胜, 李亚栋. 金属、金属氧化物纳米晶催化剂: 结构与催化性能关系研究[J]. 化学进展, 2013, 25(01): 1-11.
[9] 王伟,郑刚. 单茂金属烯烃聚合催化剂*[J]. 化学进展, 2009, 21(04): 677-686.
[10] 郁楠,侯召民,席振峰. 阳离子型稀土金属有机化合物*[J]. 化学进展, 2008, 20(10): 1515-1524.
[11] 史荣会,刘,晔,刘,蒲,王向宇. 环钯化合物在Heck反应中的应用研究[J]. 化学进展, 2007, 19(0203): 283-291.
[12] 陈立谊,杨海健,孙文华. 水相配位催化烯烃聚合的新进展*[J]. 化学进展, 2003, 15(05): 401-.
[13] 沈昊宇,金国新. 新型后过渡金属烯烃聚合催化剂--镍系烯烃聚合催化剂*[J]. 化学进展, 2003, 15(01): 60-.
[14] 王梅,何仁,钱明星. 多氮螯合配位后过渡金属络合物烯烃聚合催化剂[J]. 化学进展, 2001, 13(02): 102-.
[15] 封麟先,王立,张普玉. 茂金属/硼化合物烯烃聚合催化体系研究进展[J]. 化学进展, 2001, 13(02): 108-.
阅读次数
全文


摘要

三齿配位钛配合物催化烯烃聚合