English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 272-285 DOI: 10.7536/PC170740 前一篇   后一篇

• 综述 •

微/纳复合结构硅基负极材料

吴帅锦1,2, 杨娟玉1,2*, 于冰1,2, 方升1,2, 武兆辉1,2, 史碧梦1,2   

  1. 1. 北京有色金属研究总院 北京 100088;
    2. 国联汽车动力电池研究院有限责任公司 北京 100088
  • 收稿日期:2017-07-25 修回日期:2017-11-14 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 杨娟玉,juanyuyang@163.com E-mail:juanyuyang@163.com
  • 基金资助:
    国家重点研发计划(No.2016YFB0100400)和国家自然科学基金项目(No.51504032,51604032,U1664256)资助

Nano/Micro Structured Silicon-Based Negative Materials

Shuaijin Wu1,2, Juanyu Yang1,2*, Bing Yu1,2, Sheng Fang1,2, Zhaohui Wu1,2, Bimeng Shi1,2   

  1. 1. General Research Institute for Nonferrous Metals, Beijing 100088, China;
    2. China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
  • Received:2017-07-25 Revised:2017-11-14 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the National Key R&D Program of China(No.2016YFB0100400) and the National Natural Science Foundation of China(No.51504032, 51604032, U1664256).
硅材料因其高的理论比容量(4200 mAh/g)而成为极具发展潜力的锂离子电池负极材料之一。纳米硅负极材料可有效避免材料在循环过程中的粉化现象,同时具有较短的Li+和电子传输路径,相应电极的电化学性能与微米硅电极相比显著提升,但是纳米结构硅材料比表面积过大、振实密度低等特点限制了其在实际生产中的应用。近年来,使用纳米结构硅材料作为一次结构单元构建微/纳复合结构硅基负极材料的策略被广泛研究。本文综述了微/纳复合结构硅基负极材料的研究进展,总结了微/纳复合结构硅基负极材料中一次颗粒和二次颗粒的选择与结构设计要素,并对具有代表性的微/纳复合结构硅基负极材料物理和电化学性能进行了介绍,提出优化的材料结构和电极设计方案。最后,对微/纳复合结构硅基负极材料存在问题进行简单分析并展望了其研究前景。
Due to high theoretical specific capacity(4200 mAh/g), silicon is considered as one of the most promising materials for lithium-ion battery negative electrodes. Nano-silicon negative materials can effectively avoid the pulverization of the particles during cycling and have shorter Li+ and electron transport paths. The electrochemical performance of the corresponding electrodes is significantly improved compared to that of the micro-sized silicon based electrodes. However, the specific surface area of nano-materials is too large while the tap density is low, that limits the application of nano-silicon negative materials in practical production. In recent years, the strategy of using nano-structured silicon materials as building units to construct nano/micro structured silicon-based negative materials has been widely studied. The development of nano/micro structured silicon-based materials for lithium-ion batteries is reviewed. The selection and structural design elements of nano-sized primary particles as well as micro-sized secondary particles are summarized. The physical and electrochemical properties of representative nano/micro structured silicon-based materials are also introduced. Moreover, an optimized design of the nano/micro structured silicon-based material structure and electrode structure is proposed. Finally, challenges and problems existing in nano/micro structured silicon-based negative materials are briefly analyzed and prospects of them as negative materials for lithium-ion batteries are discussed.
Contents
1 Introduction
2 Structure of primary particles in nano/micro structured silicon-based negative materials
2.1 Primary particles of nano-silicon
2.2 Void space in primary particles
3 Design elements of secondary particles in nano/micro structured silicon-based negative materials
3.1 Void space in secondary particles
3.2 Surface coating of secondary particles
3.3 Size optimization of secondary particles
4 Conclusion and outlook

中图分类号: 

()
[1] Huggins R A, Boukamp B A. Journal of the Electrochemical Society, 1981, 128(4):725.
[2] Winter M, Besenhard J O, Spahr M E, Novak P. Advanced Materials, 1998, 10(10):725.
[3] Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Hu L B, Cui Y. Nature Nanotechnology, 2012, 7(5):310.
[4] Liu X H, Zhong L, Huang S, Mao S X, Zhu T, Huang J Y. ACS Nano, 2012, 6(2):1522.
[5] Ji H, Kim J W, Sung Y E, Oh S M. Electrochemical and Solid-State Letters, 2004, 7(10):A306.
[6] Oh S W, Myung S T, Bang H J, Chong S Y, Amine K, Sun Y K. Electrochemical and Solid-State Letters, 2009, 12(9):A181.
[7] Nam K T, Kim D W, Yoo P J, Chiang C Y, Meethong N,Hammond P T, Chiang Y M, Belcher A M. Science, 2006,312(5775):885.
[8] Xue D J, Xin S, Yan Y, Jiang K C, Yin Y X, Guo Y G, Wan L J. Journal of the American Chemical Society, 2012, 134(5):2512.
[9] Seng K H, Park M H, Guo Z P, Liu H K, Cho J. Angewandte Chemie, 2012, 124(23):5755.
[10] Su L W, Jing Y, Zhou Z. Nanoscale, 2011, 3(10):3967.
[11] Lin D C, Lu Z D, Hsu P C, Lee H R, Liu N, Zhao J, Wang H T, Liu C, Cui Y. Energy & Environmental Science, 2015, 8(8):2371.
[12] Wang Y G, Li H Q, He P, Hosono E, Zhou H S. Nanoscale, 2010, 2(8):1294.
[13] Guo Y G, Hu Y S, Maier J. Chemical Communications, 2006, 26(26):2783.
[14] Guo Y G, Hu Y S, Sigle W, Maier J. Advanced Materials, 2007, 19(16):2087.
[15] Guo Y G, Hu J S, Wan L J. Advanced Materials, 2008, 20:2878.
[16] Liou S H, Tsou T C, Wang S L, Li L A, Chiang H C, Li W F, Lin P P, Lai C H, Lee H L, Lin M H, Hsu J H, Chen C R, Shih T S, Liao H Y, Chung Y T. Journal of Nanoparticle Research, 2012, 14(8):544,
[17] Dobashi R. Journal of Physics Conference Series, 2009, 170:012029.
[18] Yoshio M, Wang H, Fukuda K, Umeno T, Abe T, Ogumi Z. Journal of Materials Chemistry, 2004, 14(11):1754.
[19] Yang S B, Song H H, Chen X H. Electrochimica Acta, 2006, 8(1):137.
[20] Bao Z H, Weatherspoon M R, Shian S, Cai Y, Graham P D, Allan S M, Ahmad G, Dickerson M B, Church B C, Kang Z T, Abernathy H W, Summers C J, Liu M L, Sandhage K H. Nature, 2007, 446(7132):172.
[21] Bang B M, Kim H, Song H K, Cho J, Park S. Energy and Environmental Science, 2011, 4(12):5013.
[22] Bang B M, Lee J I, Kim H, Cho J, Park S. Advanced Energy Materials, 2012, 2(7):878.
[23] Zhu X, Chen H, Wang Y, Xia L, Tan Q, Li H, Zhong Z, Su F, Zhao X S. Journal of Materials Chemistry C, 2013, 1(14):4483.
[24] Yin Y X, Xin S, Wan L J, Li C J, Guo Y G. Journal of Materials Chemistry C, 2011, 115(29):14148.
[25] Shin K, Park D J, Lim H S, Sun Y K, Suh K D. Electrochimica Acta, 2011, 58(1):578.
[26] Lee J H, Kim W J, Kim J Y, Lim S H, Lee S M. Journal of Power Sources, 2008, 176(1):353.
[27] Lee J I, Choi N S, Park S. Energy & Environmental Science, 2012, 5(7):7878.
[28] Hu Y S, Demircakan R, Titirici M M, Müller J O, Schlögl R, Antonietti M, Maiera J. Angewandte Chemie International Edition, 2008, 47(9):1645.
[29] Ren W F, Zhang Z L, Wang Y H, Tan Q Q, Zhong Z Y, Su F B. Journal of Materials Chemistry A, 2015, 3(11):5859.
[30] Jung S C, Choi J W, Han Y K. Nano Letters, 2012, 12(10):5342.
[31] McDowell M T, Lee S W, Harris J T, Korgel B A, Wang C M, Nix W D, Cui Y. Nano Letters, 2013, 13(2):758.
[32] Wang J W, He Y, Fan F F, Liu X H, Xia S M, Liu Y, Harris T, Li H, Huang J Y, Mao S X, Zhu T. Nano Letters, 2013, 13(2):709.
[33] Kim H, Seo M, Park M H, Cho J. Angewandte Chemie, 2010, 49(12):2146.
[34] Li H. Electrochemical and Solid-State Letters, 1999, 2(11):547.
[35] Mazouzi D, Lestriez B, Roue De' L, Guyomard D. Electrochemical and Solid-State Letters, 2009, 12(11):A215.
[36] Yang J, Winter M, Besenhard J O. Solid State Ionics, 1996, 90(1/4):281.
[37] Kasavajjula U, Wang C S, Appleby A J. Journal of Power Sources, 2007, 163(2):1003.
[38] Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Nano Letters, 2009, 9(11):3844.
[39] Peng K, Jie J, Zhang W, Lee S T. Applied Physics Letters, 2008, 93(3):033105.
[40] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nature Nanotechnology, 2008, 3(1):31.
[41] Chan C K, Ruffo R, Hong S S, Huggins R A, Cui Y. Journal of Power Sources, 2009, 189(1):34.
[42] Cui L F, Ruffo R, Chan C K, Peng H, Cui Y. Nano Letters, 2009, 9(1):491.
[43] Song T, Xia J L, Lee J H, Lee D H, Kwon M S, Choi J M, Wu J, Doo S K, Chang H, Park W I, Zang D S, Kim H, Huang Y G, Hwang K C, Rogers J A, Paik U. Nano Letters, 2010, 10(5):1710.
[44] Li J C, Dozier A K, Li Y C, Yang F Q, Cheng Y T. Journal of the Electrochemical Society, 2011, 158(6):A689.
[45] Ohara S, Suzuki J, Sekine K, Takamura T. Journal of Power Sources, 2004, 136(2):303.
[46] Takamura T, Ohara S, Uehara M, Suzuki J, Sekine K. Journal of Power Sources, 2004, 129(1):96.
[47] Yi R, Dai F, Gordin M L, Chen S R, Wang D H. Advanced Energy Materials, 2013, 3(3):295.
[48] Yi R, Dai F, Gordin M L, Sohn H, Wang D H. Advanced Energy Materials, 2013, 3(11):1507.
[49] Gauthier M, Mazouzi D, Reyter D, Lestriez B, Moreau P, Guyomard D, Rou De' L. Energy & Environmental Science, 2013, 6(7):2145.
[50] Chen X X, Li X L, Ding F, Xu W, Xiao J, Cao Y L, Meduri P, Liu J, Graff G L, Zhang J G. Nano Letters, 2012, 12(8):4124.
[51] Dai F, Yi R, Gordin M, Chen S R, Wang D H. RSC Advances, 2012, 2(33):12710.
[52] Liu N, Lu Z D, Zhao J, McDowell M T, Lee H W, Zhao W T, Cui Y. Nature Nanotechnology, 2014, 9(3):187.
[53] Sohn H, Dong H K, Yi R, Tang D, Li S E, Jung Y S, Wang D H. Journal of Power Sources, 2016, 334:128.
[54] Kim S Y, Lee J, Kim B H, Kim Y J, Yang K S, Park M S. ACS Applied Materials & Interfaces, 2016, 8(19):12109.
[55] Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L B, Nix W D, Cui Y. Nano Letters, 2011, 11(7):2949.
[56] Xiao Q, Gu M, Yang H, Li B, Zhang C, Liu Y, Liu F, Dai F, Yang L, Liu Z, Xiao X, Liu G, Zhao P, Zhang S, Wang C, Lu Y, Cai M. Nature Communications, 2015, 6:8844.
[57] Chen D Y, Mei X, Ji G, Lu M H, Xie J P, Lu J M, Lee J Y. Angewandte Chemie International Edition, 2012, 51(10):2409.
[58] Liu N, Wu H, McDowell M T, Yao Y, Wang C M, Cui Y. Nano Letters, 2012, 12(6):3315.
[59] Li X L, Meduri P, Chen X X, Qi W, Engelhard M H, Xu W, Ding F, Xiao J, Wang W, Wang C M, Zhang J G, Liu J. Journal of Materials Chemistry, 2012, 22(22):11014.
[60] Pan L, Wang H B, Gao D C, Chen S Y, Tan L, Li L. Chemical Communications, 2014, 50(44):5878.
[61] Tao H C, Fan L Z, Song W L, Wu M, He X B, Qu X H. Nanoscale, 2014, 6(6):3138.
[62] Zhou X Y, Tang J J, Yang J, Xie J, Ma L L. Electrochimica Acta, 2013, 87(1):663.
[63] Feng X J, Cui H M, Miao R R, Yan N F, Ding T D, Xiao Z Q. Ceramics International, 2015, 42(1):589.
[64] Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. Nat. Mater., 2010, 9(4):353.
[65] Jung D S, Hwang T H, Park S B, Choi J W. Nano Letters, 2013, 13(5):2092.
[66] Yoo J K, Kim J, Choi M J, Park Y U, Hong J, Baek K M, Kang K, Jung Y S. Advanced Energy Materials, 2014, 4(16):1400622.
[67] Feng X J, Yang J, Bie Y T, Wang J L, Nuli Y, Lu W. Nanoscale, 2014, 6(21):12532.
[68] Ko M, Chae S, Ma J, Kim N, Lee H W, Cui Y, Cho J. Nature Energy, 2016, 1(9):16113.
[69] Yoshio M, Wang H Y, Fukuda K, Umeno T, Dimov N, Ogumi Z. Journal of the Electrochemical Society, 2002, 149(12):A1598.
[70] Dimov N, Fukuda K, Umeno T, Kugino S, Yoshino M. Journal of Power Sources, 2003, 114(1):88.
[71] Wu X D, Wang Z X, Chen L Q, Huang X J. Electrochemistry Communications, 2003, 5(11):935.
[72] Kwon E, Lim H S, Sun Y K, Suh K D. Solid State Ionics, 2013, 237(16):28.
[73] Chen H X, Xiao Y, Wang L, Yang Y. Journal of Power Sources, 2011, 196(16):6657.
[74] Park S E, Kim B E, Lee S W, Lee J K. 中国有色金属学报(Transactions of Nonferrous Metals Society of China), 2009, 19(4):1023.
[75] Jeong G, Kim J G, Park M S, Seo M, Hwang S M, Kim Y U, Kim Y J, Kim J H, Dou S X. ACS Nano, 2014, 8(3):2977.
[76] Fang S, Shen L F, Xu G Y, Nie P, Wang J, Dou H, Zhang X G. ACS Applied Materials & Interfaces, 2014, 6(9):6497.
[77] Nguyen H T, Zamfir M R, Duong L D, Lee Y H, Bondavalli P, Pribat D. Journal of Materials Chemistry, 2012, 22(47):24618.
[78] Shao D, Tang D P, Mai Y J, Zhang L Z. Journal of Materials Chemistry A, 2013, 1(47):15068.
[79] Wang D S, Gao M X, Pan H G, Wang J H, Liu Y F. Journal of Power Sources, 2014, 256(12):190.
[80] Yen Y C, Chao S C, Wu H C, Wu N L. Journal of the Electrochemical Society, 2009, 156(2):A95.
[81] Xu Y H, Yin G P, Ma Y L, Zuo P J, Cheng X Q. Journal of Materials Chemistry, 2010, 20(16):3216.
[82] Chen S R, Gordin M L, Yi R, Howlett G, Sohn H, Wang D H. Physical Chemistry Chemical Physics, 2012, 14(37):12741.
[83] Park Y W, Choi N S, Park S J, Woo S H, Sim S J, Jang B Y, Oh S M, Park S J, Cho J P, Lee K T. Advanced Energy Materials, 2013, 3(2):206.
[84] Kim J W, Ji H R, Lee K T, Oh S M.Journal of Power Sources, 2005, 147(1/2):227.
[85] Liu Y, Hudak N S, Huber D L, Limmer S J, Sullivan J P, Huang J Y. Nano Lett, 2011, 11:4188
[86] Guo Z P, Wang J Z, Liu H K, Dou S X. Journal of Power Sources, 2005, 146(1):448.
[87] Lu Z D, Liu N, Lee H W, Zhao J, Li W Y, Li Y Z, Cui Y. ACS Nano, 2015, 9(3):2540.
[88] Li S, Qin X Y, Zhang H R, Wu J X, He Y B, Li B H, Kang F Y. Electrochemistry Communications, 2014, 49(49):98.
[89] Song J X, Chen S R, Zhou M J, Xu T, Lv D P, Gordin M L, Long T J, Melnyk M, Wang D H. Journal of Materials Chemistry A, 2013, 2(5):1257.
[90] Xu Z L, Gang Y, Garakani M A, Abouali S, Huang J Q, Kim J K. Journal of Materials Chemistry A, 2016, 4(16):6098.
[91] Wu H, Zheng G Y, Liu N, Carney T J, Yang Y, Cui Y. Nano Letters, 2012, 12(2):904.
[92] Li Y Z, Yan K, Lee H W, Lu Z D, Liu N, Cui Y. Nature Energy, 2016, 1(2):15029.
[93] Luo F, Liu B N, Zheng J Y, Chu G, Zhong K F, Li H, Huang X J, Chen L Q. Journal of the Electrochemical Society, 2015, 162(14):A2509.
[94] Vijayaraghavan B, Ely D R, Chiang Y M, Garc'la-Garc'la R, Garc'la R E. Journal of the Electrochemical Society, 2012, 159(5):A548.
[95] Srinivasan V, Newman J. Journal of the Electrochemical Society, 2004, 151(10):A1517.
[96] Darling R, Newman J. Journal of the Electrochemical Society, 1997, 144(12):4201.
[97] Farkhondeh M, Delacourt C. Journal of the Electrochemical Society, 2012, 159(2):177.
[98] Doyle M, Fuller T F, Newman J S. Journal of the Electrochemical Society, 1993, 140(6):1526.
[99] Farkhondeh M, Safari M, Pritzker M, Fowler M, Han T, Wang J, Delacourt C. Journal of the Electrochemical Society, 2014, 161(3):A201.
[100] Zavalis T G, Klett M, Kjell M H, Behm M, Lindström R W, Lindbergh G. Electrochimica Acta, 2013, 110(6):335.
[101] Rinaldo S G, Urchaga P, Hu J, Lee W, Stumper J, Rice C, Eikerling M. Physical Chemistry Chemical Physics, 2014, 16(48):26876.
[102] Röder F, Sonntag S, Schröder D, Krewer U. Energy Technology, 2016, 4:1588.
[103] Chung D W, Shearing P R, Brandon N P, Harris S J, Garcia R E. Journal of the Electrochemical Society, 2014, 161(3):A422.
[104] Smith M, Garci Di' A R E, Horn Q C. Journal of the Electrochemical Society, 2009, 156(11):A896.
[105] Kim S O, Manthiram A. Journal of Materials Chemistry A, 2014, 3(5):2399.
[106] Cho I, Choi J, Kim K, Ryou M H, Yong M L. RSC Advances, 2015, 5(115):95073.
[107] Zhang L, Wang Y H, Kan G W, Zhang Z L, Wang C G, Zhong Z Y, Su F B. RSC Advances, 2014, 4(81):43114.
[108] Wang H, Xie J, Zhang S C, Cao G S, Zhao X B. RSC Advances, 2016, 6(74):69882.
[109] Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J, Guo Y G. Advanced Energy Materials, 2016,7(3):1601481.
[110] Zheng T, Liu Y H, Fuller E W, Tseng S, Sacken U V, Dahn J R. Journal of the Electrochemical Society, 1995, 142(8):2581.
[111] De Volder M F, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339(6119):535.
[112] Gogotsi Y, Simon P. Science, 2011, 334(6058):917.
[113] Li X L, Gu M, Hu S Y, Kennard R, Yan P F, Chen X L, Wang C M, Sailor M J, Zhang J G, Liu J. Nature Communications, 2014, 5(5):4105.
[114] Hu L B, Wu H, Hong S S, Cui L F, McDonough J R, Bohy S, Cui Y. Chemical Communications, 2011, 47(1):367.
[115] Ji J Y, Ji H X, Zhang L L, Zhao X, Bai X, Fan X B, Zhang F, Ruoff R S. Advanced Materials, 2013, 25(33):4673.
[116] Gowda S R, Pushparaj V, Herle S, Girishkumer G, Gordon J G, Gullapalli H. Nano Letters, 2012, 12(12):6060.
[117] 武兆辉(Wu Z H), 杨娟玉(Yang J Y), 闫坤(Yan K), 于冰(Yu B), 方升(Fang S), 史碧梦(Shi B M). 稀有金属(Rare Materials), 2016, 40(8):838.
[118] Wang C, Wu H, Chen Z, McDowell M T, Cui Y, Bao Z N. Nature Chemistry, 2013, 5(12):1042.
[119] Chen Z, Wang C, Lopez J, Lu Z D, Cui Y, Bao Z N. Advanced Energy Materials, 2015, 5(8):1401826.
[120] Kwon T W, You K J, Lee I, Kim T S, Choi J W, Coskun A. Advanced Materials, 2014, 26(47):7979.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[9] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[10] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[11] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[12] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[13] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[14] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[15] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
阅读次数
全文


摘要

微/纳复合结构硅基负极材料