English
新闻公告
More
化学进展 2017, Vol. 29 Issue (12): 1526-1536 DOI: 10.7536/PC170732 前一篇   后一篇

所属专题: 锂离子电池

• 综述 •

锂离子电池富锂材料中离子掺杂、表面包覆、表面氧空位修饰的作用机理及其联合机制

李敏1, 王艳丽2, 吴晓燕2, 段磊2, 张春明2*, 何丹农1,2*   

  1. 1. 上海交通大学材料科学与工程学院 上海 200240;
    2. 纳米技术及应用国家工程研究中心 上海 200241
  • 收稿日期:2017-07-18 修回日期:2017-09-19 出版日期:2017-12-15 发布日期:2017-11-15
  • 通讯作者: 张春明,zhangchm2003@163.com;何丹农,hdn_nercn@163.com E-mail:zhangchm2003@163.com;hdn_nercn@163.com
  • 基金资助:
    上海市青年科技英才扬帆计划(No.15YF1408500),上海市自然科学基金资助项目(No.14ZR1429500)和国家重点基础研究项目(No.2015CB931900)资助

The Mechanism of Ion-Doping, Surface Coating, Surface Oxygen Vacancy Modification and Their Joint Mechanism in Lithium-Rich Material for Li-Ion Battery

Min Li1, Yanli Wang2, Xiaoyan Wu2, Lei Duan2, Chunming Zhang2*, Dannong He1,2*   

  1. 1. School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China
  • Received:2017-07-18 Revised:2017-09-19 Online:2017-12-15 Published:2017-11-15
  • Supported by:
    The work was supported by the Shanghai Sailing Program (No. 15YF1408500),Natural Science Foundation of Shanghai (No. 14ZR1429500), and the National Program on Key Basic Research Project (No.2015CB931900).
富锂层状氧化物材料是一种具有类固溶体结构的锂离子电池正极材料,放电比容量可达250 mAh/g,且价格低廉。因此,富锂层状氧化物材料被认为是最有希望的下一代正极材料之一。然而,富锂层状材料还存在诸多问题,如首次库仑效率低、倍率性能差以及容量和电压平台衰减严重,这些问题阻碍其在商业中的应用。本文从富锂层状材料的晶型结构和首次充放电特性出发,主要介绍了离子掺杂、表面包覆以及表面氧空位修饰的作用机理,并进一步分析了不同掺杂离子和不同包覆材料作用于富锂层状材料后性能差异的原因,以及双掺杂和双包覆的优势。最后,本文针对单纯的离子掺杂、表面包覆、表面氧空位修饰在富锂层状材料改性中的不足,提出了基于上述三种改性方式的联合改性机制,并对该机制进行了简要介绍。
The lithium-rich layered oxide material is a kind of lithium ion battery cathode material,which has a solid solution structure. It exhibits a high reversible specific capacity exceeding 250 mAh/g, and its price is very cheap. It has been considered as the most promising candidate for the next generation of cathode material. However, the lithium-rich layered oxide cathode material is facing some problems such as high irreversible capacity loss in the first cycle, poor rate capability, as well as serious capacity fading and voltage decay, which hinder its commercial application. In this paper, the structure of lithium-rich layered oxides cathode material and its typical initial charge and discharge curve are introduced, and the mechanism of ion-doping, surface coating, and surface oxygen vacancy modification are mainly focused. Then, the reasons why different doping ions and coating materials applied to lithium-rich layered oxides cathode material have the different effects, and the advantages of co-doping and double coating are further analyzed. At last, considering the limitations of ion-doping, surface coated and surface oxygen vacancy modification during the modification of lithium-rich layered oxide cathode material, the joint mechanisms based on the above three modification methods are proposed, and a brief introduction of this joint mechanism is given.
Contents
1 Introduction
2 Structure and initial charge and discharge curve
3 Modification of lithium-rich layer material
3.1 Ion-doping
3.2 Surface coating
3.3 Surface oxygen vacancy modification
3.4 The joint mechanism
4 Outlook

中图分类号: 

()
[1] Zhang L S, Wang H, Wang L Z, Fang H, Li X F, Gao H L, Zhang A Q, Song Y H. Mater Lett., 2016, 185:100.
[2] Wang L, Mu D B, Wu B R, Yang G C, Gai L, Liu Q, Fan Y J, Peng Y Y, Wu F. Electrochim. Acta, 2016, 222:806.
[3] Ji M D, Xu Y L, Zhao Z, Zhang H, Liu D, Zhao C J, Qian X Z, Zhao C H. J. Power Sources, 2014, 263:296.
[4] Peralta D, Colin J F, Boulineau A, Simonin L, Fabre F, Bouvet J, Feydi P, Chakir M, Chapuis M, Patoux S. J. Power Sources, 2015, 280:687.
[5] Phadke S, Anouti M. Electrochim. Acta, 2017, 223:31.
[6] Li S, Zhu J L, Wang Y G, Howard J W, Lü X J, Li Y T, Kumar R S, Wang L P, Daemen L L, Zhao Y S. Solid State Ionics, 2016, 284:14.
[7] Qiu B, Wang J, Xia Y G, Wei Z, Han S J, Liu Z P. J. Power Sources, 2014, 268:517.
[8] Riekehr L, Liu J L, Schwarz B, Sigel F, Kerkamm I, Xia Y G, Ehrenberg H. J. Power Sources, 2016, 306:135.
[9] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G, Tarascon J M. Nat. Mater., 2015, 14:230.
[10] Shi S J, Zhang S S, Wu Z J, Wang T, Zong J B, Zhao M X, Yang G. J. Power Sources. 2017, 337:82.
[11] Strafela M, Leiste H, Seemann K, Seifert H J, Ulrich S. Vacuum., 2016, 131:240.
[12] Tu W Q, Xia P, Zheng X W, Ye C C, Xu M Q, Li W S. J. Power Sources, 2017, 341:348.
[13] Wang Z, Yin Y P, Ren Y, Wang Z Y, Gao M, Ma T Y, Zhuang W D, Lu S G, Fan A L, Amine K, Chen Z H. Nano Energy, 2017, 31:247.
[14] Dogan F, Long B R, Croy J R, Gallagher K G, Iddir H, Russell J T, Balasubramanian M, Key B. J. Amer. Chem. Soc., 2015, 137:2328.
[15] 张琳静(Zhang L J). 北京理工大学博士论文(Doctoral Dissertation of Beijing Institute of Technology), 2015.
[16] Yan P F, Nie A M, Zheng J M, Zhou Y G, Lu D P, Zhang X F, Xu R, Belharouak I, Zu X T, Xiao J, Amine K, Liu J, Gao F, Shahbazian-Yassar R, Zhang J G, Wang C M. Nano Lett., 2015, 15:514.
[17] Yan W W, Liu Y N, Guo S W, Jiang T. ACS Appl. Mater. Interfaces, 2016, 8:12118.
[18] Yang F F, Liu Y J, Martha S K, Wu Z Y, Andrews J C, Ice G E, Pianetta P, Nanda J. Nano Lett., 2014, 14:4334.
[19] Yang S, Wu J X, Yan B G, Li L, Sun Y, Lu L, Zeng K Y. J. Power Sources, 2017, 352:9.
[20] Yu H J, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H S, Ikuhara Y. Angew. Chem., 2013, 52:5969.
[21] Yu H J, So Y G, Kuwabara A, Tochigi E, Shibata N, Kudo T, Zhou H S, Ikuhara Y. Nano Lett., 2016, 16:2907.
[22] Zhang L J, Jiang J C, Zhang C P, Wu B R, Wu F. J. Power Sources, 2016, 331:247.
[23] Zhang H Z, Zhang Y T, Song D W, Shi X X, Zhang L Q, Bie L J. J. Alloys Compd., 2017, 709:692.
[24] Zhou Z X, Ma Y L, Wang L, Zuo P J, Cheng X Q, Du C Y, Yin G P, Gao Y Z. Electrochim. Acta., 2016, 216:44.
[25] Zhu Y M, Luo X Y, Xu M Q, Zhang L, Yu L P, Fan W Z, Li W S. J. Power Sources., 2016, 317:65.
[26] Boulineau A, Simonin L, Colin J F, Bourbon C, Patoux S. Nano Lett., 2013, 13:3857.
[27] Chen C, Chen S, Luo J, Xu X P, Hu D X, Shui M, Shu J, Ren Y L. Ceram. Int., 2015, 41:10319.
[28] Buchholz D, Li J, Passerini S, Aquilanti G, Wang D D, Giorgetti M. ChemElectroChem., 2015, 2:85.
[29] Chen D R, Yu Q P, Xiang X D, Chen M, Chen Z T, Song S, Xiong L W, Liao Y H, Xing L D, Li W S. Electrochim. Acta, 2015, 154:83.
[30] Chen L, Su Y F, Chen S, Li N, Bao L Y, Li W K, Wang Z, Wang M, Wu F. Adv. Mater., 2014, 26:6756.
[31] Cotte S, Pecquenard B, Le Cras F, Grissa R, Martinez H, Bourgeois L. Electrochim. Acta, 2015, 180:528.
[32] Ding Y, Mu D B, Wu B R, Wang R, Zhao Z K, Wu F. Appl. Energy, 2017, 195:586.
[33] Wei W F, Chen L B, Pan A Q, Ivey D G. Nano Energy, 2016, 30:580.
[34] Haferburg G, Gröning J A D, Schmidt N, Kummer N A, Erquicia J C, Schlömann M. Microbiol. Res., 2017, 199:19.
[35] He Z J, Ping J, Yi Z J, Peng C, Shen C S, Liu J S. Journal. Alloys Compd., 2017, 708:1038.
[36] Hou M Y, Guo S S, Liu J L, Yang J, Wang Y G, Wang C X, Xia Y Y. J. Power Sources, 2015, 287:370.
[37] Konishi H, Gunji A, Feng X L, Furutsuki S. J. Solid State Chem., 2017, 249:80.
[38] Jin Y C, Duh J G. Energy Storage Mater., 2017, 6:157.
[39] Liu W, Oh P, Liu X, Myeong S, Cho W, Cho J. Adv. Energy Mater., 2015, 5:1500274.
[40] Zhao J K, Wang Z X, Guo H J, Li X H, He Z J, Li T. Ceram. Int., 2015, 41:11396.
[41] Li Q, Li G S, Fu C C, Luo D, Fan J M, Li L P. ACS Appl. Mater. Interfaces, 2014, 6:10330.
[42] Wang Y Q, Yang Z Z, Qian Y M, Gu L, Zhou H S. Adv. Mater., 2015, 27:3915.
[43] Jafta C J, Raju K, Mathe M K, Manyala N, Ozoemena K I. J. Electrochem. Soc., 2015, 162:A768.
[44] Tang T, Zhang H L. Electrochim. Acta, 2016, 191:263.
[45] Iftekhar M, Drewett N E, Armstrong A R, Hesp D, Braga F, Ahmed S, Hardwick L J. J. Electrochem. Soc., 2014, 161:A2109.
[46] He Z, Wang Z, Chen H, Huang Z, Li X, Guo H, Wang R. J. Power Sources, 2015, 299:334.
[47] Chen H, Hu Q Y, Huang Z M, He Z J, Wang Z X, Guo H J, Li X H. Ceram. Int., 2016, 42:263.
[48] Yu R Z, Wang G, Liu M H, Zhang X H, Wang X Y, Shu H B, Yang X K, Huang W H. J. Power Sources, 2016, 335:65.
[49] Ma Q X, Li R H, Zheng R J, Liu Y L, Huo H, Dai C S. J. Power Sources, 2016, 331:112.
[50] Sun L N, Yi X W, Ren X Z, Zhang P X, Liu J H. J. Electrochem. Soc., 2016, 163:A766.
[51] Ma J, Yan H J, Li B, Xia Z H, Huang W F, An L, Xia D G. J. Phys. Chem. C, 2016, 120:13421.
[52] Song B H, Zhou C F, Wang H L, Liu H W, Liu Z W, Lai M O, Lu L. J. Electrochem. Soc., 2014, 161:A1723.
[53] Park J H, Lim J S, Yoon J G, Park K S, Gim J Y, Song J J, Park H, Im D M, Park M S, Ahn D C, Paik Y K, Kim J K. Dalton Transactions., 2012, 41:3053.
[54] Jin X, Xu Q J, Liu X N, Yuan X L, Liu H M. Ionics., 2016, 22:1369.
[55] Tamilarasan S, Mukherjee D, Sampath S, Natarajan S, Gopalakrishnan J. Solid State Ionics., 2016, 297:49.
[56] Yi T F, Li Y M, Cai X D, Yang S Y, Zhu Y R. Mater. Today Energy., 2017, 4:25.
[57] Konishi H, Hirano T, Takamatsu D, Gunji A, Feng X L, Furutsuki S. Electrochim. Acta, 2015, 169:310.
[58] Crompton K R, Staub J W, Hladky M P, Landi B J. J. Power Sources, 2017, 343:109.
[59] Guo L C, Zhao N Q, Li J J, He C N, Shi C S, Liu E Z. ACS Appl. Mater. Interfaces, 2015, 7:391.
[60] Hou C X, Oaki Y, Hosono E, Lin H, Imai H, Fan Y Q, Dang F. Materials. Des., 2016, 109:718.
[61] Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou Y F. ACS Appl. Mater. Interfaces., 2016, 8:18832.
[62] Luo W B, Zhou F, Zhao X M, Lu Z H, Li X H, Dahn J R. Chem. Mater., 2010, 22(3):1164.
[63] Wang Y X, Shang K H, He W, Ai X P, Cao Y L, Yang H X. ACS Appl. Mater. Interfaces, 2015, 7:13014.
[64] Feng X, Gao Y R, Ben L B, Yang Z Z, Wang Z X, Chen L Q. J. Power Sources, 2016, 317:74.
[65] Qing R P, Shi J L, Xiao D D, Zhang X D, Yin Y X, Zhai Y B, Gu L, Guo Y G. Adv. Energy Mater., 2016, 6:1501914.
[66] Liu Y H, Takasaki T, Nishimura K, Yanagida M, Sakai T. J. Power Sources, 2015, 290:153.
[67] Luo K, Roberts M R, Hao R, Guerrini N, Liberti E, Allen C S, Kirkland A I, Bruce P G. Nano Lett., 2016, 16:7503.
[68] Mohanty D, Li J, Nagpure S C, Wood D L, Daniel C. MRS Energy Sustainability, 2015, 2:323.
[69] Fu F, Yao Y Z, Wang H Y, Xu G L, Amine K, Sun S G, Shao M H. Nano Energy, 2017, 35:370.
[70] Li N, An R, Su Y F, Wu F, Bao L Y, Chen L, Zheng Y, Shou H F, Chen S. J. Mater. Chem. A, 2013, 1:9760.
[71] Wei Z, Xia Y G, Qiu B, Zhang Q, Han S J, Liu Z P. J. Power Sources, 2015, 281:7.
[72] Luo D, Li G S, Fu C C, Zheng J, Fan J M, Li Q, Li L P. Adv. Energy Mater., 2014, 4:1400062.
[73] Mohanty D, Sefat A S, Payzant E A, Li J, Wood D L, Daniel C. J. Power Sources, 2015, 283:423.
[74] Li L, Song B H, Chang Y L, Xia H, Yang J R, Lee K S, Lu L. J. Power Sources, 2015, 283:162.
[75] Song J H, Kapylou A, Choi H S, Yu B Y, Matulevich E, Kang S H. J. Power Sources, 2016, 313:65.
[76] Guo B, Zhao J H, Fan X M, Zhang W, Li S, Yang Z H, Chen Z X, Zhang W X. Electrochim. Acta, 2017, 236:171.
[77] Muhammad S, Lee S, Kim H, Yoon J, Jang D, Yoon J, Park J H, Yoon W S. J. Power Sources, 2015, 285:156.
[78] Zhou Y K, Bai P F, Tang H Q, Zhu J T, Tang Z Y. J. Electroanal. Chem., 2016, 782:256.
[79] Zhu Z Y, Cai F Y, Yu J. Ionics., 2016, 22:1353.
[80] Liu W M, Tang X, Qin M L, Li G L, Deng J Y, Huang X W. Mater. Lett., 2016, 185:96.
[81] Wang Z Y, Liu E Z, Guo L C, Shi C S, He C N, Li J J, Zhao N Q. Surf. Coat. Technol., 2013, 235:570.
[82] Wu Y, Vadivel Murugan A, Manthiram A. J. Electrochem. Soc., 2008, 155:A635.
[83] He L, Xu J M, Han T, Han H, Wang Y J, Yang J, Wang J R, Zhu W K, Zhang C J, Zhang Y H. Ceram. Int., 2017, 43:5267.
[84] Singh G, Thomas R, Kumar A, Katiyar R S, Manivannan A. J. Electrochem. Soc., 2012, 159:A470.
[85] Zheng J M, Li J, Zhang Z R, Guo X J, Yang Y. Solid State Ionics, 2008, 179:1794.
[86] Oh P, Myeong S, Cho W, Lee M J, Ko M, Jeong H Y, Cho J. Nano Lett., 2014, 14:5965.
[87] Shi J L, Zhang J N, He M, Zhang X D, Yin Y X, Li H, Guo Y G, Gu L, Wan L J. ACS Appl. Mater. Interfaces, 2016, 8:20138.
[88] Wu F, Li N, Su Y F, Zhang L J, Bao L Y, Wang J, Chen L, Zheng Y, Dai L Q, Peng J Y, Chen S. Nano Lett., 2014, 14:3550
[89] Xiao L, Xiao J, Yu X Q, Yan P F, Zheng J M, Engelhard M, Bhattacharya P, Wang C M, Yang X Q, Zhang J G. Nano Energy, 2015, 16:143.
[90] Chong S K, Chen Y Z, Yan W W, Guo S W, Tan Q, Wu Y F, Jiang T, Liu Y N. J. Power Sources, 2016, 332:230.
[91] Sun Y K, Lee M J, Yoon C S, Hassoun J, Amine K, Scrosati B. Adv. Mater., 2012, 24:1192.
[92] Zhang J, Lu Q W, Fang J H, Wang J L, Yang J, NuLi Y. ACS Appl. Mater. Interfaces, 2014, 6:17965.
[93] Chen C, Geng T F, Du C Y, Zuo P J, Cheng X Q, Ma Y L, Yin G P. J. Power Sources, 2016, 331:91.
[94] Zheng F H, Yang C H, Xiong X H, Xiong J W, Hu R Z, Chen Y, Liu M L. Angew. Chem., 2015, 54:13058
[95] Wang Z Y, Liu E Z, He C N, Shi C S, Li J, Zhao N Q. J. Power Sources, 2013, 236:25.
[96] Zhao E Y, Chen M M, Hu Z B, Chen D F, Yang L M, Xiao X L. J. Power Sources, 2017, 343:345.
[97] Zhao E Y, Liu X F, Hu Z B, Sun L M, Xiao X L. J. Power Sources, 2015, 294:141.
[98] Gao K, Zhao S X, Guo S T, Nan C W. Electrochim. Acta, 2016, 206:1.
[99] Lee Y, Lee J, Lee K Y, Mun J, Lee J K, Choi W. J. Power Sources, 2016, 315:284.
[100] Chen D R, Zheng F, Li L, Chen M, Zhong X X, Li W S, Lu L. J. Power Sources, 2017, 341:284
[101] Chen D R, Tu W Q, Chen M, Hong P B, Zhong X X, Zhu Y M, Yu Q P, Li W S. Electrochim. Acta, 2016, 193:45.
[102] James C, Wu Y, Sheldon B W, Qi Y. Solid State Ionics., 2016, 289:87.
[103] Qiao Q Q, Li G R, Wang Y L, Gao X P. J. Mater. Chem. A, 2016, 4:4440.
[104] Riekehr L, Liu J L, Schwarz B, Sigel F, Kerkamm I, Xia Y Y, Ehrenberg H. J. Power Sources, 2016, 325:391.
[105] Li Z H, Li X G, Liao Y H, Li X P, Li W S. J. Power Sources, 2016, 334:23.
[106] Qiu B, Zhang M H, Wu L J, Wang J, Xia Y G, Qian D N, Liu H D, Hy S, Chen Y, An K, Zhu Y M, Liu Z P, Meng Y S. Nat. Commun., 2016, 7:12108.
[1] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[2] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[3] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[4] 严武渭, 柳永宁, 崇少坤, 周亚萍, 刘建国, 邹志刚. 高能量密度锂离子电池用富锂正极材料[J]. 化学进展, 2017, 29(2/3): 198-209.
[5] 黄昭, 王丹, 张春明, 何丹农. 不同取代位掺杂对Li4Ti5O12结构及性能的影响[J]. 化学进展, 2014, 26(12): 1914-1923.
[6] 殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[7] 邓海福, 聂平, 申来法, 罗海峰, 张校刚. 锂离子电池用高电位正极材料LiNi0.5Mn1.5O4[J]. 化学进展, 2014, 26(06): 939-949.
[8] 陈崧哲,张彭义,祝万鹏,刘福东. 可见光响应光催化剂研究进展*[J]. 化学进展, 2004, 16(04): 613-.