English
新闻公告
More
化学进展 2017, Vol. 29 Issue (12): 1499-1508 DOI: 10.7536/PC170727 前一篇   后一篇

• 综述 •

聚邻苯二胺微纳米相关材料的制备和应用

蒋坤朋, 韩晓军*   

  1. 新能源转换与储存关键材料技术工信部重点实验室 城市水资源与水环境国家重点实验室 哈尔滨工业大学化工与化学学院 哈尔滨 150001
  • 收稿日期:2017-07-14 修回日期:2017-10-25 出版日期:2017-12-15 发布日期:2017-11-15
  • 通讯作者: 韩晓军,hanxiaojun@hit.edu.cn E-mail:hanxiaojun@hit.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21773050,21528501)、城市水资源与水环境国家重点实验室(哈尔滨工业大学)自主课题(No.2017DX05)和哈尔滨工业大学环境生态创新专项基金(No.HSCJ201607)资助

Preparation and Applications of PoPD Micro/Nano Related Structures

Kunpeng Jiang, Xiaojun Han*   

  1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2017-07-14 Revised:2017-10-25 Online:2017-12-15 Published:2017-11-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21773050,21528501), the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology (No. 2017DX05), and the HIT Environment and Ecology Innovation Special Funds(No. HSCJ201607)
聚邻苯二胺(PoPD)作为一种重要的苯胺类衍生物,其结构由苯环和连接在苯环上两个相邻的—NH2组成。与聚苯胺相比,聚邻苯二胺具有更多的活性位点,在后期加工和修饰方面具有巨大的优势。近年来,聚邻苯二胺作为一种重要的导电聚合物,以其优良的光电性能和在化工生产中的重要地位,成为众多学者研究的热点。本论文从聚邻苯二胺微纳米相关材料的制备和应用两个方面总结了聚邻苯二胺材料的研究进展。制备方面重点总结了化学氧化法、共沉淀法、微流控法等在聚邻苯二胺微纳米材料合成方面的进展;结合本课题组的研究结果,主要针对聚邻苯二胺的聚合机理、氧化还原过程、组装过程等方面进行总结。应用方面重点总结了聚邻苯二胺微纳米相关材料在传感器、聚邻苯二胺的衍生物在生物成像和超级电容器等方面的研究进展。最后,对聚邻苯二胺微纳米相关材料制备和应用方面存在的问题进行分析,对未来的发展方向进行展望,为后续相关研究提供参考。
Ortho-phenylendiamine (oPD), with two adjacent -NH2 groups in the benzene ring, is one of typical aniline derivatives. PoPD has huge advantages in the respects of post processing and modification because PoPD owns more active sites than poly-aniline. As an important conductive polymer, PoPD has attracted increasing attention due to its special conductive mechanism and important role in chemical production. Herein, the progress in preparation and applications of PoPD micro/nano related materials are summarized. The progress in the preparation of PoPD micro/nano structures by using chemical oxidation method, reprecipitation method and microfluidic methods are focused. In combination with our research results, this paper summarizes the mechanism of polymerization, the process of oxidation-reduction and the mechanism of self-assembly of PoPD materials. Their applications in the field of sensors, bio-imaging and supercapacitors are also summarized. The current issues and the future trends of the preparation of PoPD micro/nano related materials are also analyzed which will provide useful references for the new research of PoPD micro/nano related materials.
Contents
1 Introduction
2 Preparation of PoPD micro/nano materials
2.1 Chemical oxidation method
2.2 Reprecipitation method
2.3 Microfluidic method
2.4 Other methods
3 Applications of PoPD materials
3.1 Applications of PoPD materials in sensors
3.2 Applications of PoPD materials in biological imaging
3.3 Applications of PoPD materials in supercapacitors
4 Outlook

中图分类号: 

()
[1] Pisarevskaya E Y, Ehrenburg M R, Ovsyannikova E V, Efimov O N, Andreev V N. Russ. J. Electrochem., 2017, 53:70.
[2] Avnir D, Braun S, Lev O, Ottolenghi M. Chem. Mater.,1994, 6:1605.
[3] Malitesta C, Palmisano F, Torsi L, Zambonin P G. Anal. Chem.,1990, 62:2735.
[4] Mazeikiene R, Malinauskas A.Synth. Met.,2002, 128:121.
[5] Yano J, Shimoyama A, Ogura K. J. Chem. Soc., Faraday Trans., 1992, 88:2523.
[6] Li Y, Li T T, Yao M, Liu S Q. J. Mater. Chem.,2012, 22:10911.
[7] Ekinci E, Erdogdu G, Karagözler A E. J. Appl. Polym. Sci.,2001, 79:327.
[8] Palmisano F, Centonze D, Zambonin P. Biosens. Bioelectron.,1994, 9:471.
[9] Wu G Z, Asai S, Sumita M, Yui H. Macromolecules, 2002, 35:945.
[10] Hadorn M, Boenzli E, Hanczyc M M. Langmuir, 2016, 32:3561.
[11] Whitesides G M, Grzybowski B. Science, 2002, 295:2418.
[12] Fujita D, Ueda Y, Sato S, Mizuno N, Kumasaka T, Fujita M. Nature, 2016, 540:563.
[13] Kim S O, Solak H H, Stoykovich M P, Ferrier N J, de Pablo J J, Nealey P F. Nature, 2003, 424:411.
[14] 黄美荣(Huang M R),马小立(Ma X L),李新贵(Li G X).功能材料(Journal of Function Materials), 2008, 39(1):9.
[15] Tian J Q, Li H L, Luo Y L, Wang L, Zhang Y W, Sun X P. Langmuir, 2011, 27:874.
[16] Lu X, Tuan H Y, Chen J, Li Z Y, Korgel B A, Xia Y. J. Am. Chem. Soc., 2007, 129:1733.
[17] Jana N R, Gearheart L, Murphy C J. J. Phys. Chem. B, 2001, 105:4065.
[18] Millstone J E, Hurst S J, Métraux G S. Cutler J I, Mirkin C A. Small, 2009, 5:646.
[19] Sun X P, Dong S J, Wang E K. Angew. Chem. Int. Ed., 2004, 43:6360.
[20] Sun X P, Dong S J, Wang E K. Chem. Commun., 2004, 1182.
[21] Han J, Liu Y, Li L Y, Guo R. Langmuir, 2009, 25:11054.
[22] He D P, Wu Y, Xu B Q. Eur. Polym. J.,2007, 43:3703.
[23] Lu X F, Mao H, Chao D M, Zhao X G, Zhang W J, Wei Y. Mater. Lett., 2007, 61:1400.
[24] Guo S J, Dong S J, Wang E K. Chem. Mater., 2007, 19:4621.
[25] Sun X P, Hagner M. Langmuir, 2007, 23:10441.
[26] Wang Z F, Liao F, Yang S W, Guo T T. Fibers and Polymers, 2011, 12:997.
[27] Zhang L Y, Chai L Y, Wang H Y, Yang Z H. Mater. Lett., 2010, 64:1193.
[28] Li T X, Yuan C Q, Zhao Y H, Chen Q L, Wei M, Wang Y M. J. Macromol. Sci. Pure Appl. Chem., 2013, 50:330.
[29] Chai L Y, Zhang L Y, Wang H Y, Yu W T, Sang P L. Mater. Lett., 2010, 64:2302.
[30] Tian J Q, Liu S, Sun X P. Langmuir, 2010, 26:15112.
[31] Jiang K P, Ma S H, Bi H M, Chen D F, Han X J. J. Mater. Chem. A, 2014, 2:19208.
[32] Jiang K P, Ma S H, Zhang Y, Han X J. RSC Adv., 2016, 6:21895.
[33] Jiang K P, Ma S H, Wang Y N, Zhang Y, Han X J. Appl. Surf. Sci., 2017, 403:677.
[34] Gong X C, Milic T, Xu C, Batteas J D, Drain C M. J. Am. Chem. Soc., 2002, 124:14290.
[35] Tan C, Pinto M R, Kose M E, Ghiviriga I, Schanze K S. Adv. Mater., 2004, 16:1208.
[36] Zang L, Che Y K, Moore J S. Acc. Chem. Res., 2008, 41:1596.
[37] Chen S, Slattum P, Wang C Y, Zang L. Chem. Rev., 2015, 115:11967.
[38] Jiang H Q, Sun X P, Huang M H, Wang Y L, Li D, Dong S J. Langmuir, 2006, 22:3358.
[39] Whitesides G M. Nature, 2006, 442:368.
[40] Hansen A S, Hao N, O'shea E K. Nature Protocols, 2015, 10:1181.
[41] Au A K, Lee W, Folch A. Lab on a Chip, 2014, 14:1294.
[42] Majedi F S, Hasani-Sadrabadi M M, Emami S H, Shokrgozar M A, VanDersarl J J, Dashtimoghadam E, Bertsch A, Renaud P. Lab on a Chip, 2013, 13:204.
[43] Bai S, Debnath S, Gibson K, Schlicht B, Bayne L, Zagnoni M, Ulijn R V. Small, 2014, 10:285.
[44] Hamon C, Henriksen-Lacey M, La Porta A, Rosique M, Langer J, Scarabelli L, Montes A B S, González-Rubio G,de Pancorbo M M. Liz-Marzán L M. Adv. Funct. Mater., 2016, 26:8053.
[45] Wang L, Ma S H, Yang B, Cao W W, Han X J. Chem. Eng. J., 2015, 268:102.
[46] Ratha S, Rout C S. ACS Appl. Mat. Inter., 2013, 5:11427.
[47] Li Y X, Hu Y F, Peng S Q, Lu G X, Li S B. J. Phys. Chem. C, 2009, 113:9352.
[48] Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M. Angew. Chem. Int. Ed., 2006, 45:2378.
[49] Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8:355.
[50] Zheng X T, Ananthanarayanan A, Luo K Q, Chen P. Small, 2015, 11:1620.
[51] Liao F, Yang S W, Li X B, Yan S, Hu C S, He L,Kang X Y, Song X, Ren T Y. Synth. Met., 2014, 190:79.
[52] 汪莲艳(Wang L Y), 陆枫(Lu F), 吴福全(Wu F Q), 顾仁敖(Gu R A), 姚建林(Yao J L), 张海禄(Zhang H L), 邓宗武(Deng Z W).物理化学学报(Acta Physico-Chimca Sinca), 2011, 27(6):1451.
[53] 郭婷婷(Guo T T), 廖钫(Liao F), 汪周峰(Wang Z F), 杨思维(Yang S W).化学研究与应用(Chemical Research & Application), 2012, 24(2):260.
[54] 刘有芹(Liu Y Q), 颜芸(Yan Y), 陈明洁(Chen M J), 徐莉(Xu L), 徐悦华(Xu Y H). 化学研究与应用(Chemical Research & Application), 2008, 20(11):1430.
[55] Kappe C O. Angew. Chem. Int. Ed., 2004, 43:6250.
[56] Kappe C O. Chem. Soc. Rev., 2008, 37:1127.
[57] Leadbeater N E, Marco M. Org. Lett., 2002, 4:2973.
[58] Song L, Cui Y Y, Zhang C F, Hu Z B, Liu X F. RSC Adv., 2016, 6:17704.
[59] Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437:121.
[60] Hao Q L, Sun B M, Yang X J, Lu L, Wang X. Mater. Lett., 2009, 63:334.
[61] 阿孜古丽·木尔赛力木(Aziguli M), 如仙古丽·加马力(Ruxianguli J), 吐尔逊·阿不都热依木(Tuerxun A), 司马义·努尔拉(Simayi N), 吾买尔江·吐尔逊(Wumaierjiang T). 化学研究与应用(Chemical Research & Application), 2007, 19(4):409.
[62] 吐尔逊·阿布都热依木(Tuerxun A), 张校刚(Zhang X G). 高分子材料科学与工程(Polymer Materials and Engineering), 2005, 21(5):110.
[63] Zhang Y W, Sun X P. Chem. Commun., 2011, 47:3927.
[64] Geraghty D P, Mazzone S B, Carter C, Kunde D A. Catal. Sci & Technol., 2011, 1:1393.
[65] Tian J Q, Li H L, Lu W B, Luo Y L, Wang L, Sun X P. Analyst, 2011, 136:1806.
[66] Zhang Y W, Wang L, Tian J Q, Li H L, Luo Y L, Sun X P. Langmuir, 2011, 27:2170.
[67] Sun X P, Dong S J, Wang E K. Macromol. Rapid Commun., 2005, 26:1504.
[68] Sun J, Wang B, Zhao X, Li Z J, Yang X R. Anal. Chem., 2016, 88:1355.
[69] Liao F, Song X, Yang S W, Hu C Y, He L, Yan S, Ding G Q. J. Mater. Chem. A, 2015, 3:7568.
[70] Chang Y Y, Xie S B, Chai Y Q, Yuan Y L, Yuan R. Chem. Commun., 2015, 51:7657.
[71] Fang B Y, Liang Y, Chen F. Talanta, 2014, 119:601.
[72] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P J G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128:7756.
[73] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52:3953.
[74] Ge J C, Jia Q Y, Liu W M, Guo L, Liu Q Y, Lan M H, Zhang H Y, Meng X M, Wang P F. Adv. Mater., 2015, 27:4169.
[75] Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Angew. Chem. Int. Ed., 2015, 54:5360.
[76] Yuan C Q, Liu X H, Jia M Y, Luo Z X, Yao J N. J. Mater. Chem. A, 2015, 3:3409.
[77] Zhu H, Wang X L,Liu X X, Yang X R. Adv. Mater., 2012, 24:6524.
[78] Wang M R, Zhang H H, Wang C Y, Hu X Y, Wang G X. Electrochim. Acta, 2013, 91:144.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[10] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[11] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[12] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[13] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[14] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[15] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.