English
新闻公告
More
化学进展 2017, Vol. 29 Issue (12): 1471-1479 DOI: 10.7536/PC170711 前一篇   后一篇

• 综述 •

甲烷二氧化碳重整制合成气钴基催化剂

卢君颖1, 郭禹1, 刘其瑞1, 韩广智1, 王周君1,2*   

  1. 1. 北京化工大学化工资源有效利用国家重点实验室 北京 100029;
    2. 北京化工大学能源环境催化北京市重点实验室 北京 100029
  • 收稿日期:2017-07-12 修回日期:2017-09-25 出版日期:2017-12-15 发布日期:2017-11-06
  • 通讯作者: 王周君,wangzj@mail.buct.edu.cn E-mail:wangzj@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21776007,21403012)和北京市自然科学基金项目(No.2144053)资助

Co-Based Catalysts for Carbon Dioxide Reforming of Methane to Synthesis Gas

Junying Lu1, Yu Guo1, Qirui Liu1, Guangzhi Han1, Zhou-jun Wang1,2*   

  1. 1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2017-07-12 Revised:2017-09-25 Online:2017-12-15 Published:2017-11-06
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21776007, 21403012) and the Beijing Natural Science Foundation (No. 2144053).
温室效应是人类面临的巨大挑战,温室气体的转化利用因而成为广泛研究的热点和难点课题。甲烷二氧化碳重整,即干重整制合成气因为可以同时将两种温室气体(CH4/CO2)转化为可用于清洁能源生产的合成气(H2/CO)而被认为是极具前景的先进技术。此技术目前仍未大规模工业化,其主要瓶颈在于尚未研发出合适的催化剂。过渡金属催化剂因其高活性和相对低廉的成本而被认为最具工业化前景,此前的研究主要集中在镍基催化剂,但是镍基催化剂易因表面积碳和金属烧结而快速失活。近年来,研究者发现钴基催化剂在甲烷二氧化碳重整中也具有良好的催化性能,并进行了初步的研究。本文将对钴基重整催化剂的研究现状进行简要综述。论文首先介绍了催化剂的活性组分、载体、助剂以及制备方法等对钴基催化剂重整性能的影响,接着阐述了钴基催化剂的重整反应机理以及积碳-消碳过程,最后对钴基重整催化剂的设计及未来研究方向进行了展望。
Greenhouse effect has been a pressing challenge for the mankind. The conversion and utilization of greenhouse gases become a difficult research topic with general interest all over the world. In this context, carbon dioxide (CO2) reforming of methane, namely dry reforming has been recognized as an advanced technology with great prospect because it can convert two potent greenhouse gases (CH4/CO2) into valuable synthesis gas (syngas, H2/CO). Commercialization of this technology remains unrealized mainly due to the lack of feasible catalysts. Considering the excellent activity and relatively low cost, transition metal based catalysts are regarded as the most promising candidates. The previous research mainly focuses on Ni-based catalysts. But the Ni-based catalysts are vulnerable to rapid deactivation due to carbon deposition and metal sintering. Recently, Co-based catalysts have been reported to possess excellent catalytic performance. Herein, the progress of Co-based catalysts for CO2 reforming of methane is reviewed. The first section addresses the role of active phases, supports, promoters and synthesis methodologies on catalytic performance. The second section discusses the catalytic mechanism and the formation of coke. The last section proposes the strategies for rational design of improving Co-based reforming catalysts and the research directions of Co-based reforming catalysts in the near future.
Contents
1 Introduction
2 The study of Co-based catalysts
2.1 The role of active phases
2.2 The role of supports
2.3 The role of promoters
2.4 The role of synthesis methodologies
3 Catalytic mechanisms and the formation of coke
3.1 Catalytic mechanisms
3.2 The formation of coke
4 Conclusion and outlook

中图分类号: 

()
[1] Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40:3703.
[2] Budiman A W, Song S H, Chang T S, Shin C H, Choi M J. Catal. Surv. Asia., 2012, 16:183.
[3] Wang Z J, Zhao Y, Cui L, Du H Y, Yao P, Liu C J. Green Chem., 2007, 9:554.
[4] Fischer F, Tropsch H. Brennstoff. Chem., 1928, 3:39.
[5] Pompeo F, Nichio N N, González M G, Montes M. Catal. Today, 2005, 107/108:856.
[6] Pakhare D, Spivey J. Chem. Soc. Rev., 2014, 43:7813.
[7] Liu C J, Ye J Y, Jiang J J, Pan Y X. ChemCatChem, 2011, 3:529.
[8] Sun J W, Wang S, Guo Y, Li M Z, Zou H K, Wang Z J. Catal. Commun., 2018, 104:53.
[9] Wen S P, Liang M L, Zou J M, Wang S, Zhu X D, Liu L, Wang Z J. J. Mater. Chem. A, 2015, 3:13299.
[10] Wang Z J, Yan Z, Liu C J, Goodman D W. ChemCatChem, 2011, 3:551.
[11] Wang Z J, Skiles S, Yang F, Yan Z, Goodman D W. Catal. Today, 2012, 181:75.
[12] Ruckenstein E, Wang H Y. J. Catal., 2002, 205:289.
[13] Ibrahim A A, Naeem M A, Fakeeha A H, Khan W U, Al-Fatesh A S, Abasaeed A E. Chem. Eng. Technol., 2015, 38:1397.
[14] Özkara-Aydinoglu S, Aksoylu A E. Catal. Commun., 2010, 11:1165.
[15] Mirzaei F, Rezaei M, Meshkani F, Fattah Z. J. Ind. Eng. Chem., 2015, 21:662.
[16] Wang H Y, Ruckenstein E. Appl. Catal. A:Gen., 2001, 209:207.
[17] 黄传敬(Huang C J). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2000.
[18] Fan M S, Abdullah A Z, Bhatia S. Appl. Catal. B:Environ., 2010, 100:365.
[19] Feng T C, Zheng W T, Sun K Q, Xu B Q. Catal. Commun., 2016, 73:54.
[20] Sengupta S, Ray K, Deo G. Int. J. Hydrogen Energy, 2014, 39:11462.
[21] Ferencz Z, Baán K, Oszkó A, Kónya Z, Kecskés T, Erdöhelyi A. Catal. Today, 2014, 228:123.
[22] Itkulova S S, Zhunusova K Z, Zakumbaeva G D. Bull. Korean Chem. Soc., 2005, 26:2017.
[23] San-José-Alonso D, Juan-Juan J, Illán-Gómez M J, Román-Martínez M C. Appl. Catal. A:Gen., 2009, 371:54.
[24] 马淳安(Ma C A). 上海大学博士论文(Doctoral Dissertation of Shanghai University), 2005.
[25] Shao H F, Kugler E L, Ma A W, Dadyburjor D B. Ind. Eng. Chem. Res., 2007, 44:4914.
[26] Shao H F, Kugler E L, Dadyburjor D B, Rykov S A, Chen J J G. Appl. Catal. A:Gen., 2009, 356:18.
[27] Cheng J M, Huang W. Fuel Process. Technol., 2010, 91:185.
[28] 王莉(Wang L), 敖先权(Ao X Q), 王诗瀚(Wang S H). 化学进展(Progress in Chemistry), 2012, 24:1696.
[29] Ruckenstein E, Wang H Y. Appl. Catal. A:Gen., 2000, 204:257.
[30] Abasaeed A E, Al-Fatesh A S, Naeem M A, Ibrahim A A, Fakeeha A H. Int. J. Hydrogen Energy, 2015, 40:6818.
[31] Ayodele B V, Khan M R, Cheng C K. Int. J. Hydrogen Energy, 2016, 41:198.
[32] Ayodele B V, Khan M R, Lam S S, Cheng C K. Int. J. Hydrogen Energy, 2016, 41:4603.
[33] Ayodele B V, Hossain S S, Lam S S, Osazuwa O U, Khan M R, Cheng C K. J. Nat. Gas Sci. Eng., 2016, 34:873.
[34] Zhang X H, Hu R J, Liu Y F, Zhao J W, Hou L N, Yang D, Hao Z M, Su H Q. Int. J. Hydrogen Energy, 2015, 40:10026.
[35] Djinovi Dc' P, Crnivec I G O, Erjavec B, Pintar A. Appl. Catal. B:Environ., 2012, 125:259.
[36] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359:710.
[37] Abdollahifar M, Haghighi M, Sharifi M. Energ. Convers. Manage., 2015, 103:1101.
[38] Estephane J, Aouad S, Hany S, Khoury B E I, Gennequin C, Zakhem H EI, Nakat J EI, Aboukais A, Abi-Aad E. Int. J. Hydrogen Energy, 2015, 40:9201.
[39] Yuan Q, Yin A X, Luo C, Zhang Y W, Duan W T, Liu H C, Yan C H. J. Am. Chem. Soc., 2008, 130:3465.
[40] Liu S G, Guan L X, Li J P, Zhao N, Wei W, Sun Y H. Fuel, 2008, 87:2477.
[41] Xu L L, Zhao H H,Song H L, Chou L J. Int. J. Hydrogen Energy, 2012, 37:7497.
[42] Xu L L, Zhang X, Chen M D, Qi L, Nie D Y, Ma Y H. Int. J. Hydrogen Energy, 2016, 41:17348.
[43] Gennequin C, Safariamin M, Sihhert S, Aboukais A, Abi-Aad E. Catal. Today, 2011, 176:139.
[44] Cai W J, Qian L P, Yue B, Chen X Y, He H Y. Chinese Chem. Lett., 2013, 24:777.
[45] Zhang G J, Du Y N, Xu Y, Zhang Y F. J. Ind. Eng. Chem., 2014, 20:1677.
[46] Zhang G J, Qu J W, Su A T, Zhang Y F, Xu Y. J. Ind. Eng. Chem., 2015, 21:311.
[47] Zhang G J, Hao L X, Jia Y, Du Y N, Zhang Y F. Int. J. Hydrogen Energy, 2015, 40:12868.
[48] Aldashukurova G B, Mironenko A V, Mansurov Z A, Shikin N V, Yashnik S A, Kuznetsov V V, Ismagilov Z R. J. Energy Chem., 2013, 22:811.
[49] Guo Y, Zou J M, Shi X, Rukundo P, Wang Z J. ACS Sustainable Chem. Eng., 2017, 5:2330.
[50] San-José-Alonso D, Illán-Gómez M J, Román-Martínez M C. Catal. Today, 2011, 176:187.
[51] Usman M, Daud W M A W, Abbas H F. Renew. Sust. Energ. Rev., 2015, 45:710.
[52] Ewbank J L, Kovarik L, Kenvin C C, Sievers C. Green Chem., 2014, 16:885.
[53] Ji L, Tang S, Zeng H C, Lin J, Tan K L. Appl. Catal. A:Gen., 2001, 207:247.
[54] Lee J H, You Y W, Ahn H C, Hong J S, Kim S B, Chang T S, Suh J K. J. Ind. Eng. Chem., 2014, 20:284.
[55] Wang S B, Lu G Q. Energy Fuels, 1996,10:896.
[56] Fan M S, Abdullah A Z, Bhatia S. ChemCatChem, 2009, 1:192.
[57] Wang Z Y, Cao X M, Zhu J H, Hu P. J. Catal., 2014, 311:469.
[58] Budiman A W, Song S H, Chang T S, Choi M J. Adv. Powder Technol., 2016, 27:584.
[59] Foo S Y, Cheng C K, Nguyen T H, Adesina A A. Catal. Today, 2011, 164:221.
[60] Zhang J G, Wang H, Dalai A K. Ind. Eng. Res., 2009, 48:677.
[61] 姜洪涛(Jiang H T), 华炜(Hua W), 计建炳(Ji J B).化学进展(Progress in Chemistry), 2013, 25:859.
[62] Gadalla A M, Bower B. Chem. Eng. Sci., 1988, 43:3049.
[63] Goula M A, Lemonidou A A, Efstathiou A M E. J. Catal., 1996, 161:626.
[64] Shamsi A, Baltrus J R, Spivey J J. Appl. Catal. A:Gen. 2005, 293:145.
[65] 路勇(Lu Y), 邓存(Deng C), 丁雪加(Ding X J), 沈师孔(Shen S K). 催化学报(Chinese Journal of Catalysis), 1995, 16:447.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[13] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[14] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[15] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.