English
新闻公告
More
化学进展 2017, Vol. 29 Issue (12): 1480-1487 DOI: 10.7536/PC170703 前一篇   后一篇

• 综述 •

刺激响应聚合物在生物医药中的应用

李子程, 李攻科*, 胡玉玲*   

  1. 中山大学化学学院 广州 510275
  • 收稿日期:2017-07-05 修回日期:2017-10-10 出版日期:2017-12-15 发布日期:2017-11-15
  • 通讯作者: 李攻科,cesgkl@mail.sysu.edu.cn;胡玉玲,ceshyl@mail.sysu.edu.cn E-mail:cesgkl@mail.sysu.edu.cn;ceshyl@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21675178,21475153,21575168)、广东省自然科学重点基金项目(No.2015A030311020,2016A030313358)、广东省公益研究与能力建设专项基金(No.2015A030401036)和广州市民生科技重大专项(No.201604020165)资助

Stimuli-Responsive Polymers in Biomedical Applications

Zicheng Li, Gongke Li*, Yuling Hu*   

  1. School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
  • Received:2017-07-05 Revised:2017-10-10 Online:2017-12-15 Published:2017-11-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (No. 21675178, 21475153, 21575168), the Guangdong Provincial Natural Science Foundation (No. 2015A030311020, 2016A030313358), the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China (No. 2015A030401036), and the Guangzhou Minsheng Science and Technology Major Project of China (No.201604020165).
刺激响应聚合物是一类能够根据外界环境变化,如pH、离子、温度、光等刺激而改变自身物理化学性质的功能性聚合物。近年来,刺激响应聚合物由于其独特的刺激-响应功能性,在疾病诊断、药物递送、传感器等领域具有广泛的应用。根据不同刺激类型,刺激响应聚合物有不同分类。本文根据化学刺激、物理刺激及生物刺激三方面,综述了刺激响应聚合物的合成方法及其响应机理,并对这类功能材料的应用前景进行了展望。
Stimuli-responsive polymers are capable of exhibiting reversible or irreversible changes in physical and/or chemical properties in response to small changes in external environment, such as pH, ions, temperature, light, etc. In recent years, stimuli-responsive polymers have been widely used in disease diagnosis, drug delivery, and sensors. Depending on the type of the external stimuli, stimuli-responsive polymers can be classified into several categories. This article reviews the synthesis methods and the mechanism of the stimuli-responsive polymers based on the chemical stimulation, physical stimulation and biological stimulation. Furthermore, the long-term prospect and the potential applications of these functional materials are introduced.
Contents
1 Introduction
2 Chemical stimulation
2.1 pH-responsive polymers
2.2 Gas-responsive polymers
2.3 Ion-responsive polymers
3 Physical stimulation
3.1 Thermo-responsive polymers
3.2 Electric-responsive polymers
3.3 Photo-responsive polymers
4 Biological stimulation
4.1 Glucose-responsive polymers
4.2 Nucleic acids-responsive polymers
4.3 Enzyme-responsive polymers
5 Conclusion

中图分类号: 

()
[1] Beija M, Marty J, Destarac M. Prog. Polym. Sci., 2011, 36(7):845.
[2] Smith A E, Xu X W, McCormick C L. Prog. Polym. Sci., 2010, 35(1/2):45.
[3] Roy D, Cambre J N, Sumerlin B S. Prog. Polym. Sci., 2010, 35(1/2):278.
[4] Islam M R, Lu Z Z, Li X, Sarker A K, Hu L, Choi P, Li X, Hakobyan N, Serpe M J. Anal. Chim. Acta, 2013, 789:17.
[5] Fleige E, Quadir M A, Haag R. Adv. Drug Deliver. Rev., 2012, 64(9):866.
[6] Zhu Y, Yang B, Chen S, Du J. Prog. Polym. Sci., 2017, 64:1.
[7] Leng J S, Lan X, Liu Y J, Du S Y. Prog. Mater. Sci., 2011, 56(7):1077.
[8] Medeiros S F, Santos A M, Fessi H, Elaissari A. Int. J. Pharmaceut., 2011, 403(1/2):139.
[9] Carreira A S, Gonçalves F A M M, Mendonça P V, Gil M H, Coelho J F J. Carbohyd. Polym., 2010, 80(3):618.
[10] Hoffman A S. Adv. Drug Deliver. Rev., 2013, 65(1):10.
[11] Wang Y P, Byrne J D, Napier M E, Desimone J M. Adv. Drug Deliver. Rev., 2012, 64(11):1021.
[12] Fan X L, Liu J, Jia X K, Liu Y, Zhang H, Wang S Q, Zhang B L, Zhang H P, Zhang Q Y. Nano Res., 2017, 10(9):2905.
[13] Luo G F, Chen W H, Hong S, Cheng Q, Qiu W X, Zhang X Z. Adv. Funct. Mater., 2017, 27(36):1702122.
[14] Yang L M, Li N, Pan W, Yu Z Z, Tang B. Anal. Chem., 2015, 87(7):3678.
[15] Pan W, Wang H H, Yang L M, Yu Z Z, Li N, Tang B. Anal. Chem., 2016, 88(13):6743.
[16] Lin S J, Theato P. Macromol. Rapid Commun., 2013, 34(14):1118.
[17] Lu W G, Sculley J P, Yuan D Q, Krishna R, Zhou H C. J. Phys. Chem. C, 2013, 117(8):4057.
[18] Luo S H, Chen S Y, Chen S X, Zhuang L Z, Ma N F, Xu T, Li Q H, Hou X N. J. Environ. Manage., 2016, 168:142.
[19] Kim H J, Chaikittisilp W, Jang K S, Didas S A, Johnson J R, Koros W J, Nair S, Jones C W. Ind. Eng. Chem. Res., 2015, 54(16):4407.
[20] Fan Y F, Rezaei F, Labreche Y, Lively R P, Koros W J, Jones C W. Fuel, 2015, 160:153.
[21] Sanz-Perez E S, Murdock C R, Didas S A, Jones C W. Chem. Rev., 2016, 116(19):11840
[22] Xu H, Rudkevich D M. J. Org. Chem., 2004, 69(25):8609.
[23] Xu H, Rudkevich D M. Org. Lett., 2005, 7(15):3223.
[24] Stastny V, Rudkevich D M. J. Am. Chem. Soc., 2007, 129(5):1018.
[25] Xu H, Rudkevich D M. Chem. Eur. J., 2004, 10(21):5432.
[26] Han D H, Boissiere O, Kumar S, Tong X, Tremblay L, Zhao Y. ACS Macromolecules, 2012, 45(18):7440.
[27] Han D H, Tong X, Boissière O, Zhao Y. ACS Macro Lett., 2012, 1(1):57.
[28] Zhang J M, Han D H, Zhang H J, Chaker M, Zhao Y, Ma D L. Chem. Commun., 2012, 48(94):11510.
[29] Ma Y, Promthaveepong K, Li N. Anal. Chem., 2016, 88(16):8289.
[30] Che H L, Yuan J Y. Macromol. Res., 2017, 25(6):635.
[31] Wang H B, Jessop P G, Liu G J. ACS Macro Lett., 2012, 1(8):944.
[32] Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y. J. Am. Chem. Soc., 2012, 134(44):18177.
[33] Yan Q, Zhao Y. Angew. Chem. Int. Ed., 2013, 52(38):9948.
[34] Quek J Y, Roth P J, Evans R A, Davis T P, Lowe A B. Polym. Chem., 2013, (51):394.
[35] Iii S W T, Yagia S, Swager T M. J. Mater. Chem., 2005, 15:2829.
[36] Xiang H F, Zhou L, Feng Y, Cheng J H, Wu D, Zhou X G. Inorg. Chem., 2012, 51(9):5208.
[37] Do L, Smith R C, Tennyson A G, Lippard S J. Inorg. Chem., 2006, 45(22):8998.
[38] Smith R C, Tennyson A G, Won A C, Lippard S J. Inorg. Chem., 2006, 45(23):9367.
[39] Jeon H Y, Lee J Y, Kim M H, Yoon J Y. Macromol. Rapid Commun., 2012, 33(11):972.
[40] Masai H, Terao J, Seki S, Nakashima S, Kiguchi M, Okoshi K, Fujihara T, Tsuji Y. J. Am. Chem. Soc., 2014, 136(5):1742.
[41] Lin Q, Sun B, Yang Q P, Fu Y P, Zhu X, Wei T B, Zhang Y M. Chem.-Eur. J., 2014, 20(36):11457.
[42] Shi H F, Liu S J, An Z F, Yang H R, Geng J L, Zhao Q, Liu B, Huang W. Macromol. Biosci., 2013, 13(10):1339.
[43] Shi H F, Liu S J, Sun H B, Xu W J, An Z F, Chen J, Sun S, Lu X M, Zhao Q, Huang W. Chem. Eur. J., 2010, 16(40):12158.
[44] Li P, Liu L, Xiao H B, Zhang W, Wang L L, Tang B. J. Am. Chem. Soc., 2016, 138(9):2893.
[45] Zhang W, Wang X, Li P, Xiao H B, Zhang W, Wang, H, Tang B. Anal. Chem., 2017, 89(12):6840.
[46] Li L, Feng J, Fan Y Y, Tang B. Anal. Chem., 2015, 87(9):4829.
[47] Li L, Fan Y Y, Li Q L, Sheng R J, Si H B, Fang J, Tong L L, Tang B. Anal. Chem., 2017, 89(8):4559.
[48] Tan H L, Liu B X, Chen Y. ACS Nano, 2012, 6(12):10505.
[49] Qin C J, Wong W Y, Wang L X. Macromolecules, 2011, 44(3):483.
[50] Lakshmi N V, Mandal D, Ghosh S, Prasad E. Chem. Eur. J., 2014, 20(29):9002.
[51] Wang D E, Wang T L, Tian C, Zhang L L, Han X, Tu Q, Yuan M S, Chen S, Wang J Y. J. Mater. Chem. A, 2015, 3(43):21690.
[52] Fegley M E A, Sandgren T, Duffy-Matzner J L, Chen A T, Jones W E. J. Polym. Sci. Pol. Chem., 2015, 53(8):951.
[53] Deraedt C, Rapakousiou A, Wang Y L, Salmon L, Bousquet M, Astruc D. Angew. Chem. Int. Ed., 2014, 53(32):8445.
[54] Chen T, Ferris R, Zhang J M, Ducker R, Zauscher S. Prog. Polym. Sci., 2010, 35(1/2):94.
[55] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem., 2004, 116(3):361.
[56] Lendlein A, Langer R. Science, 2002, 296(5573):1673.
[57] Zhou J, Turner S A, Brosnan S M, Li Q X, Carrillo J Y, Nykypanchuk D, Gang O, Ashby V S, Dobrynin A V, Sheiko S S. Macromolecules, 2014, 47(5):1768.
[58] Zeng Q, McNally A, Keyes T E, Forster R J. Electrochem. Commun., 2008, 10(3):466.
[59] Cui B B, Yao C J, Yao J N, Zhong Y W. Chem. Sci., 2014, 5(3):932.
[60] Le H H, Kolesov I, Ali Z, Uthardt M, Osazuwa O, Ilisch S, Radusch H J. J. Mater. Sci., 2010, 45(21):5851.
[61] Guo J, Wang N J, Peng L, Wu J J, Ye Q Q, Feng A C, Wang Z P, Zhang C, Xing X H, Yuan J Y. J. Mater. Chem. B, 2016, 4(22):4009.
[62] Borré E, Stumbé J, Bellemin-Laponnaz S, Mauro M. Angew. Chem. Int. Ed., 2016, 55(4):1313.
[63] Ke K, Du Z K, Chang X Y, Ren B Y. Colloid. Polym. Sci., 2017, 295(10):1851.
[64] Chujo Y, Sada K, Saegusa T. Macromolecules, 1990, (23):2693.
[65] Jiang J Q, Qi B, Lepage M, Zhao Y. Macromolecules, 2007, 40(4):790.
[66] Jiang X S, Wang R, Ren Y R, Yin J. Langmuir, 2009, 25(17):9629.
[67] Li Y Y, Dong H Q, Wang K, Shi D L, Zhang X Z, Zhuo R X. Sci. China Chem., 2010, 53(3):447.
[68] Qing G Y, Lu Q, Xiong Y T, Zhang L, Wang H X, Li X L, Liang X M, Sun T L. Adv. Mater., 2017, 29:1604670.
[69] 丁鹏(Ding P), 陈掀(Chen X), 李秀玲(Li X L), 卿光焱(Qing G Y), 孙涛垒(Sun T L), 梁鑫淼(Liang X M), 化学进展(Prog. Chem.), 2015, 27(11):1628.
[70] Yan Q, Zhao Y. Chemical Communications, 2014, 50(79):11631.
[71] Meng F H, Zhong Z Y, Feijen J. Biomacromolecules, 2009, 10(2):197.
[72] Torchilin V P. Nat. Rev. Drug Discov., 2014, 13(11):813.
[73] Mizutani A, Kikuchi A, Yamato M, Kanazawa H, Okano T. Biomaterials, 2008, 29(13):2073.
[74] Podual K, Doyle F J, Peppas N A. J. Control. Release, 2000, 67(1):9.
[75] Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y. Angew. Chem. Int. Edit., 2012, 51(9):2124.
[76] Brownlee M, Cerami A. Science, 1979, 206(4423):1190.
[77] Kim H, Kang Y J, Kang S, Kim K T. J. Am. Chem. Soc., 2012, 134(9):4030.
[78] Xiong Y T, Jiang G, Li M M, Qing G Y, Li X L, Liang X M, Sun T L. Sci. Rep., 2017, 7:40913.
[79] Edwardson T G W, Carneiro K M M, McLaughlin C K, Serpell C J, Sleiman H F. Nat. Chem., 2013, 5(10):868.
[80] Bujold K E, Fakhoury J, Edwardson T G W, Carneiro K M M, Briard J N, Godin A G, Amrein L, Hamblin G D, Panasci L C, Wiseman P W, Sleiman H F. Chem. Sci., 2014, 5(6):2449.
[81] Calin G A, Croce C M. Nat. Rev. Cancer, 2006, 6(11):857.
[82] Zhang P H, He Z M, Wang C, Chen J N, Zhao J J, Zhu X N, Li C Z, Min Q H, Zhu J J. ACS Nano, 2015, 9(1):789.
[83] Amir R J, Zhong S, Pochan D J, Hawker C J. J. Am. Chem. Soc., 2009, 131(39):13949.
[84] Olson E S, Jiang T, Aguilera T A, Nguyen Q T, Ellies L G, Scadeng M, Tsien R Y. Proc. Natl. Acad. Sci.U.S.A, 2010, 107(9):4311.
[85] Overall C M, Kleifeld O. Nat. Rev. Cancer, 2006, 6(3):227.
[86] Hu Q Y, Sun W J, Lu Y, Bomba H N, Ye Y Q, Jiang T Y, Isaacson A J, Gu Z. Nano Lett., 2016, 16(2):1118.
[87] Gulbake A, Jain S K. Expert Opin. Drug Del., 2012, 9(6):713.
[88] Rao J Y, Khan A. J. Am. Chem. Soc., 2013, 135(38):14056.
[89] Lee S H, Bui H T, Vales T P, Cho S, Kim H J. Dyes and Pigments., 2017,145:216.
[90] Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H. J. Biomed. Mater. Res., 2017, DOI:10.1002/jbm.a.36230.
[91] Laskar, P., Dey, J., Ghosh, S. K. Journal of Colloid and Interface Science, 2017, 501:22.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[5] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[6] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[7] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[8] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[9] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[10] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[11] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[12] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[13] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[14] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[15] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.