English
新闻公告
More
化学进展 2017, Vol. 29 Issue (10): 1173-1183 DOI: 10.7536/PC170620 前一篇   后一篇

• 综述 •

微电极制备、表面修饰及活体/单细胞电分析应用

赵旭, 王克青, 李博, 李长青, 林雨青*   

  1. 首都师范大学化学系 北京 100048
  • 收稿日期:2017-06-20 修回日期:2017-08-18 出版日期:2017-10-15 发布日期:2017-08-29
  • 通讯作者: 林雨青,e-mail:linyuqing@cnu.edu.cn E-mail:linyuqing@cnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21575090)和北京市自然科学基金项目(No.2162009)资助

Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode

Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*   

  1. Department of Chemistry, Capital Normal University, Beijing 100048, China
  • Received:2017-06-20 Revised:2017-08-18 Online:2017-10-15 Published:2017-08-29
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21575090) and the Beijing Natural Science Foundation of China (No. 2162009).
微电极是指至少在一维尺度上不大于25 μm的电极。微电极由于尺寸小而具有一些常规电极无法比拟的性质,如具有电流密度高、响应速度快、欧姆压降(iR降)小、信噪比高等特点。微电极特殊的性质使其在电化学测试中具有独特的优点和重要性,并在分析化学、生物学及医学等方面得到了广泛应用,尤其在生命分析领域如在单细胞检测和活体分析中具有众多重要的应用。微电极的设计制备是微电极电化学发展应用的关键,目前涌现出的制备微电极的技术有电化学刻蚀法、电沉积法、自组装技术、化学镀层技术等,这些制备方法为快速制备微电极提供了可能性。本文综述了近年来微电极的研究进展,包括微电极的特点、分类、制备方法及其单细胞检测和活体分析方面的应用,最后提出了微电极面临的挑战与发展方向。
The microelectrode is referred to the scale (at least one dimension) is not more than 25 μm, and the size is smaller than the diffusion layer thickness. Microelectrode has unique nature due to their small size. Increasing interests have been drawn in microelectrode fabrication and application since microelectrode possesses special features such as high current density, rapid response, immunity to ohmic drop, high signal to noise ratio. Microelectrode plays an important role in electrochemical technology for its unique properties, and there are many applications in the field of life analysis, such as the single cell detection and in vivo analysis. The preparation of microelectrode is the key to the application of microelectrode electrochemical development. According to the excellent performance of microelectrode, many technologies are involved in the preparation of microelectrode, such as electrochemical etching, electro-deposition method, self-assembly technology, electroless plating technology.Meanwhile, the preparation methods provide the possibility for rapid preparation of microelectrodes. According to different characteristics of the conventional electrodes, microelectrode research progress in recent years are reviewed, including the unique characteristics of microelectrode, classification and preparation methods of microelectrodes, applications in the field of life analysis, the challenge for the microelectrode and development direction.
Contents
1 Introduction
2 Unique characteristics of microelectrode
2.1 High current density
2.2 Immunity to ohmic drop
2.3 High signal to noise ratio
2.4 Fast mass transfer speed
2.5 Simple device
2.6 Drawbacks
3 Classification and preparation methods of microelectrodes
3.1 Carbon ultra-microelectrode
3.2 Carbon nanotube microelectrode
3.3 Carbon fiber microelectrode
3.4 Platinum microelectrode
3.5 Gold microelectrode
4 The in vivo/single cell applications of microelectrodes
4.1 In vivo detection
4.2 Single cell detection
5 Conclusion

中图分类号: 

()
[1] Bard A J, Faulkner L R. Electrochemical Methods. 2nd ed. NY:Wiley, 2001.
[2] 李竹赟(Li Z Y), 王敏(Wang M).化学进展(Progress in Chemistry), 2007, 19(10):1585.
[3] Conyers J L, White H S. Anal. Chem., 2000, 72(18):4441.
[4] Kissinger P T, Hart J B, Adams R N. Brain Res., 1973, 55(1):209.
[5] Adams R N. Anal. Chem., 1976, 48(14):1126A.
[6] Dayton M A, Brown J C, Stutts K J, Wightman R M. Anal. Chem., 1980, 52(6):946.
[7] 孙擎擎(Sun Q Q), 周文辉(Zhou W H), 赵文博(Zhao W B), 胡久刚(Hu J G), 孙睿吉(Sun R J), 朱裔荣(Zhu Y R), 陈康华(Chen K H), 陈启元(Chen Q Y). 化学教育(Chinese Journal of Chemical Education), 2015, 36(10):1.
[8] Penner R M, Heben M J, Longin T L, Lewis N S. Science, 1990, 250:1118.
[9] Santhiago M, Wydallis J B, Kubota L T, Henry C S. Anal. Chem., 2013, 85(10):5233.
[10] Hu X Q, He Q H, Lu H, Chen H W. J. Electroanal. Chem., 2010, 638(1):21.
[11] Zhang M N, Liu K, Xiang L, Lin Y Q, Su L, Mao L Q. Anal. Chem., 2007, 79(17):6559.
[12] Lin Y Q, Wang K Q, Xu Y N, Li L B, Luo J X, Wang C. Biosens. Bioelectron., 2016, 78:274.
[13] Xiao C, Liu Y L, Xu J Q, Lv S W, Guo S, Huang W H. Analyst, 2015, 140(11):3753.
[14] Li X C, Majdi S, Dunevall J, Fathali H, Ewing A G. Angew. Chem. Int. Ed., 2015, 54(41):11978.
[15] Ha Y J, Sim J G, Lee Y M, Suh M. Anal. Chem., 2016, 88(5):2563.
[16] Matysik F M. Microchim. Acta, 2008, 160(1/2):1.
[17] Nashimoto Y, Takahashi Y, Zhou Y, Ito H, Ida H, Ino K, Matsue T, Shiku H. ACS Nano, 2016, 10(7):6915.
[18] McKelvey K, Nadappuram B P, Actis P, Takahashi Y, Korchev Y E, Matsue T, Robinson C, Unwin P R. Anal. Chem., 2013, 85(15):7519.
[19] Arce M D, Bonazza H L, Fernández J L. Electrochim. Acta, 2013, 107:248.
[20] Demaille C, Brust M, Tsionsky M, Bard A J. Anal. Chem., 1997, 69(13):2323.
[21] Zhu X X, Tong J H, Bian C, Gao C Y, Xia S H. Micromachines, 2017, 8(3):86.
[22] Zhao X J, Zhang Q M, Chen H G, Liu G L, Bai W D. Electroanalysis, DOI:10.1002/elan.201700164.
[23] Hao J, Xiao T F, Wu F, Yu P, Mao L Q. Anal. Chem., 2016, 88(22):11238.
[24] Goda T, Yamada E, Katayama Y, Tabata M, Matsumoto A, Miyahara Y. Biosens. Bioelectron., 2016, 77:208.
[25] Ng S R, O'Hare D. Analyst, 2015, 140(12):4224.
[26] Shaibani P M, Etayash H, Naicker S, Kaur K, Thundat T. ACS Sensors, 2017, 2(1):151.
[27] 张祖训(Zhang Z X). 超微电极电化学(Ultramicroelectrode Electrochemistry). 北京:科学出版社(Beijing:Science Press), 1998. 6.
[28] 李启隆(Li Q L), 胡劲波(Hu J B). 电分析化学(Electroanalytical Chemistry). 北京:北京师范大学出版社(Beijing:Beijing Normal University Press), 2007. 11.
[29] 闫康(Yan K), 孟凡伟(Meng F W), 吴锋(Wu F), 科学通报(Chin. Sci. Bull.), 2014, 59:2851.
[30] 吴守国(Wu S G), 袁倬斌(Yuan Z B). 电分析化学原理(Principle of Electroanalytical Chemistry). 合肥:中国科学技术大学出版社(Hefei:China Scientific Technology Press), 2012. 3.
[31] Trojanowicz M. TrAC Trends in Analytical Chemistry, 2006, 25(5):480.
[32] Tian Y, Mao L Q, Okajima T, Ohsaka T. Biosens. Bioelectron., 2005, 21(4):557.
[33] Cox J T, Zhang B. Annual Review of Analytical Chemistry, 2012, 5:253.
[34] Hao R, Zhang B. Anal. Chem., 2015, 88(1):614.
[35] Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaleva S, Cornut R, Takahashi Y, Córdoba A L, Novak P, Shevchuck A I, Dougan J A, Kazarian S G, Gorelkin P V, Erofeev A S, Yaminsky I V, Unwin P R, Schuhmann W, Klenerman D, Rusakov D A, Sviderskaya E V, Korchev Y E. ACS Nano, 2014, 8(1):875.
[36] Lin Y Q, Trouillon R, Svensson M I, Keighron J D, Cans A S, Ewing A G. Anal. Chem., 2012, 84(6):2949.
[37] Putzbach W, Ronkainen N J. Sensors, 2013, 13(4):4811.
[38] Jacobs C B, Peairs M J, Venton B J. Analyt. Chim. Acta, 2010, 662(2):105.
[39] Swamy B E K, Venton B J. Analyst, 2007, 132(9):876.
[40] Xiao N, Venton B J. Anal. Chem., 2012, 84(18):7816.
[41] Xiang L, Yu P, Zhang M N, Hao J, Wang Y X, Zhu L, Dai L M, Mao L Q. Anal. Chem., 2014, 86(10):5017.
[42] Mauzeroll J, Hueske E A, Bard A J. Anal. Chem., 2003, 75(15):3880.
[43] Tsai T C, Guo C X, Han H Z, Li Y T, Huang Y Z, Li C M, Chen J J J. Analyst, 2012, 137(12):2813.
[44] Jena B K, Percival S J, Zhang B. Anal. Chem., 2010, 82(15):6737.
[45] Percival S J, Zhang B. Langmuir, 2014, 30(37):11235.
[46] Shironita S, Sakai T, Umeda M. Electrochim. Acta, 2013, 113:773.
[47] Abbou J, Demaille C, Druet M, Moiroux J. Anal. Chem., 2002, 74(24):6355.
[48] Jiang J H, Wang X Y. Electrochem. Commun., 2012, 20:157.
[49] Velmurugan J, Sun P, Mirkin M V. J. Phys. Chem. C, 2009, 113(1):459.
[50] Du Toit H, di Lorenzo M. Sens. Actuators B, 2014, 192:725.
[51] Zhang B, Heien M L A V, Santillo M F, Mellander L, Ewing A G. Anal. Chem., 2010, 83(2):571.
[52] Wang J, Trouillon R, Dunevall J, Ewing A G. Anal. Chem., 2014, 86(9):4515.
[53] Carabelli V, Gosso S, Marcantoni A, Xu Y, Colombo E, Gao Z, Vittone E, Kohn E, Pasquarelli A, Carbone E. Biosens. Bioelectron., 2010, 26(1):92.
[54] Zachek M K, Takmakov P, Park J, Wightman R M, McCarty G S. Biosens. Bioelectron., 2010, 25(5):1179.
[55] Zachek M K, Park J, Takmakov P, Wightman R M, McCarty G S. Analyst, 2010, 135(7):1556.
[56] Wang L, Xu H, Song Y, Luo J P, Wei W J, Xu S W, Cai X X. ACS Appl. Mater. Interfaces, 2015, 7(14):7619.
[57] Özel R E, Wallace K N, Andreescu S. Anal. Chim. Acta, 2011, 695:89.
[58] Liu Y Z, Yao Q Q, Zhang X M, Li M N, Zhu A W, Shi G Y. Biosens. Bioelectron., 2015, 63:262.
[59] Lourenco C F, Ledo A, Laranjinha J, Gerhardt G A, Barbosa R M. Sens. Actuators B Chem., 2016, 237:298.
[60] Hochstetler S E, Puopolo M, Gustincich S, Raviola E, Wightman R M. Anal. Chem., 2000, 72(3):489.
[61] Omiatek D M, Dong Y, Heien M L, Ewing A G. ACS Chem. Neurosci., 2010, 1(3):234.
[62] Adams K L, Jena B K, Percival S J, Zhang B. Anal. Chem., 2011, 83(3):920.
[63] Strein T G, Ewing A G. Anal. Chem., 1992, 64(13):1368.
[64] Strand A M, Venton B J. Anal. Chem., 2008, 80(10):3708.
[65] Li X Y, Liu X H, Wang W W, Li L, Lu X Q. Biosens. Bioelectron., 2014, 59:221.
[66] Liu Y, Sun G Z, Jiang C B, Zheng X T, Zheng L X. Microchim. Acta, 2014, 181(1/2):63.
[67] Chen Y, Li Q, Jiang H, Wang X M. J. Electroanal. Chem., 2016, 781:233.
[68] Yao D C, Vlessidis A G, Evmiridis N P. Microchim. Acta, 2004, 147(1/2):1.
[69] Griveau S, Bedioui F. Anal. Bioanal. Chem., 2013, 405(11):3475.
[70] Trouillon R. Biol. Chem., 2012, 394(1):17.
[71] Zhang X J. Front. Biosci. Landmrk., 2004, 9:3434.
[72] Xu T, Scafa N, Xu L P, Su L, Li C Z, Zhou S F, Liu Y, Zhang X J. Electroanal., 2014, 26(3):449.
[73] Privett B J, Shin J H, Schoenfisch M H. Chem. Soc. Rev., 2010, 39(6):1925.
[74] Daniel M C, Astruc D. Chem. Rev., 2004, 104(1):293.
[75] Jain P K, Huang X H, El-Sayed I H, El-Sayed M A. Plasmonics, 2007, 2(3):107.
[76] Rothrock A R, Donkers R L, Schoenfisch M H. J. Am. Chem. Soc., 2005, 127(26):9362.
[77] Polizzi M A, Stasko N A, Schoenfisch M H. Langmuir, 2007, 23(9):4938.
[78] Caruso E B, Petralia S, Conoci S, Giuffrida S, Sortino S. J. Am. Chem. Soc., 2007, 129(3):480.
[79] Dang X P, Hu C G, Wang Y K, Hu S S. Sens. Actuators B, 2011, 160:260.
[80] Feeny R M, Wydallis J B, Chen T, Tobet S, Reynolds M M, Henry C S. Electroanalysis, 2015, 27(5):1104.
[81] Elliott J, Duay J, Simoska O, Shear J B, Stevenson K J. Anal. Chem., 2017.
[82] Murray R W. Chem. Rev., 2008, 108(7):2688.
[83] Zhang A Q, Lieber C M. Chem. Rev., 2015, 116(1):215.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[4] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[5] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[6] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[9] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[12] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[13] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[14] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[15] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.