English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1000-1007 DOI: 10.7536/PC170618 前一篇   后一篇

• 综述 •

活体固相微萃取技术在动植物体内污染物分析中的应用

殷立, 徐剑桥*, 黄周兵, 陈国胜, 黄思铭, 欧阳钢锋*   

  1. 中山大学化学学院 环境与能源化学广东普通高校重点实验室 广州 510275
  • 收稿日期:2017-06-19 修回日期:2017-08-29 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 欧阳钢锋,e-mail:cesoygf@mail.sysu.edu.cn;徐剑桥,e-mail:522688270@qq.com E-mail:cesoygf@mail.sysu.edu.cn;522688270@qq.com
  • 基金资助:
    国家自然科学基金项目(No.21377172,21477166,21527813,21677182)资助

Application of in vivo Solid-Phase Microextraction on Pollutants Analysis in Living Animals and Plants

Li Yin, Jianqiao Xu*, Zhoubing Huang, Guosheng Chen, Siming Huang, Gangfeng Ouyang*   

  1. Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2017-06-19 Revised:2017-08-29 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21377172, 21477166, 21527813, 21677182).
固相微萃取作为一种简便、快速、绿色的采样和样品前处理技术,近年来引起了广泛关注。在活体分析领域,基于相关萃取动力学理论的发展和新型活体采样探针的研制,固相微萃取技术逐步用于不同动植物体系中多种污染物的分析。本文概述了固相微萃取活体定量校正方法的开发、活体采样动力学过程的研究、新型活体采样探针的制备,以及活体固相微萃取方法在动植物组织中污染物快速检测及污染物富集和消除过程跟踪研究中的应用。此外,本文也对活体固相微萃取技术今后的发展方向和应用前景进行了展望。
As a sampling and sample preparation technique which is convenient, rapid as well as environmentally-friendly, solid-phase microextraction has attracted widespread attention. Within the scope of its application on in vivo analysis, solid-phase microextraction has been gradually used for highly-efficient detection of various analytes of interest in living animals and plants with the new illustrations on extraction kinetics of solid-phase microextraction, together with development on novel in vivo sampling fibers. In this article we give an overview of the proposal of various calibration methods for quantification, recent investigations on the extraction kinetics of in vivo sampling, and preparations of novel samplers for in vivo solid-phase microextraction, apart from rapid detection of multiple pollutants in living animals or plants, as well as continuous long-term monitoring of uptake and elimination of pollutants therein. Potential application and future trends of development of in vivo solid-phase microextraction are also discussed.
Contents

中图分类号: 

()
[1] Ouyang G, Pawliszyn J. Anal. Chim. Acta, 2008, 627(2):184.
[2] Ai J. Anal. Chem.,1997, 69(6):1230.
[3] Ai J. Anal. Chem., 1997, 69(16):3260.
[4] Zhou S, Zhao W, Pawliszyn J. Anal. Chem., 2008, 80(2):481.
[5] Zhang X, Oakes K D, Luong D, Metcalfe C D, Pawliszyn J, Servos M R. Anal. Chem., 2011, 83(6):2371.
[6] Zhang X, Oakes K D, Cui S, Bragg L, Servos M R, Pawliszyn J. Environ. Sci. Technol., 2010, 44(9):3417.
[7] Chen Y, Pawliszyn J. Anal. Chem., 2004, 76(19):5807.
[8] Ouyang G, Zhao W, Pawliszyn J. Anal. Chem., 2005, 77(24):8122.
[9] Zhao W, Ouyang G, Alaee M, Pawliszyn J. J. Chromatogr. A, 2006, 1124(1):112.
[10] Zhang X, Oakes K D, Hoque M E, Luong D, Taheri-Nia S, Lee C, Smith B M, Metcalfe C D, de Solla S, Servos M R. Anal. Chem., 2012, 84(16):6956.
[11] Togunde O P, Lord H, Oakes K D, Servos M R, Pawliszyn J. J. Sep. Sci., 2013, 36(1):219.
[12] Zhang X, Oakes K D, Hoque M E, Luong D, Metcalfe C D, Pawliszyn J, Servos M R. Anal. Chem., 2011, 83(9):3365.
[13] Zhang X, Cai J, Oakes K D, Breton F, Servos M R, Pawliszyn J. Anal. Chem., 2009, 81(17):7349.
[14] Zhou S, Oakes K D, Servos M R, Pawliszyn J. Environ. Sci. Technol., 2008, 42(16):6073.
[15] Yeung J C Y, Vuckovic D, Pawliszyn J. Anal. Chim. Acta,2010, 665(2):160.
[16] Ouyang G, Oakes K D, Bragg L, Wang S, Liu H, Cui S, Servos M R, Dixon D G, Pawliszyn J. Environ. Sci. Technol., 2011, 45(18):7792.
[17] Ouyang G, Pawliszyn J. J. Chromatogr. A, 2007, 1168(1):226.
[18] Oomen A G, Mayer P, Tolls J. Anal. Chem., 2000, 72(13):2802.
[19] Kramer N I, van Eijkeren J C, Hermens J L. Anal. Chem., 2007, 79(18):6941.
[20] ter Laak T L, van Eijkeren J C, Busser F J, van Leeuwen H P, Hermens J L. Environ. Sci. Technol., 2009, 43(5):1379.
[21] Benhabib K, Town R M, van Leeuwen H P. Langmuir, 2009, 25(6):3381.
[22] Zieli Dn' ska K, van Leeuwen H P, Thibault S, Town R M. Langmuir, 2012, 28(41):14672.
[23] Xu J, Huang S, Jiang R, Cui S, Luan T, Chen G, Qiu J, Cao C, Zhu F, Ouyang G. Anal. Chim. Acta, 2016, 917:19.
[24] Jiang R, Xu J, Lin W, Wen S, Zhu F, Luan T, Ouyang G. Anal. Chim. Acta, 2015, 900:111.
[25] Jiang R, Xu J, Zhu F, Luan T, Zeng F, Shen Y, Ouyang G. J. Chromatogr. A, 2015, 1411:34.
[26] Xu J, Huang S, Wei S, Yang M, Cao C, Jiang R, Zhu F, Ouyang G. Anal. Chem., 2016, 88(18):8921.
[27] Ouyang G, Vuckovic D, Pawliszyn J. Chem. Rev., 2011, 111(4):2784.
[28] Zhu F, Xu J, Ke Y, Huang S, Zeng F, Luan T, Ouyang G. Anal. Chim. Acta, 2013, 794:1.
[29] Xu J, Chen G, Huang S, Qiu J, Jiang R, Zhu F, Ouyang G. Trends Anal. Chem., 2016, 85:26.
[30] Togunde O P, Oakes K D, Servos M R, Pawliszyn J. Environ. Sci. Technol., 2012, 46(10):5302.
[31] Zhang X, Oakes K D, Wang S, Servos M R, Cui S, Pawliszyn J, Metcalfe C D. TrAC, Trends Anal. Chem., 2012(32):31.
[32] Baker B, Sinnott M. J. Chromatogr. A, 2009, 1216(48):8442.
[33] Loi R X, Solar M C, Weidenhamer J D. J. Chem. Ecol., 2008, 34(1):70.
[34] Limmer M A, Holmes A J, Burken J G. Environ. Sci. Technol., 2014, 48(18):10634.
[35] Wu Q, Wu D, Guan Y. Anal. Chem., 2013, 85(23):11524.
[36] Li D, McCann J T, Xia Y, Marquez M. J. Am. Ceram. Soc., 2006, 89(6):1861.
[37] McCann J T, Li D, Xia Y. J. Mater. Chem., 2005, 15(7):735.
[38] Li D, Xia Y. Nano Lett., 2004, 4(5):933.
[39] Pham Q P, Sharma U, Mikos A G. Tissue Eng., 2006, 12(5):1197.
[40] Teo W E, Ramakrishna S. Nanotechnology, 2006, 17(14):R89.
[41] Xu J, Huang S, Wu R, Jiang R, Zhu F, Wang J, Ouyang G. Anal. Chem., 2015, 87(6):3453.
[42] Peltenburg H, Droge S T, Hermens J L, Bosman I J. J. Chromatogr. A, 2015, 1390:28.
[43] Qiu J, Chen G, Zhu F, Ouyang G. J. Chromatogr. A, 2016, 1455:20.
[44] Xu J, Wu R, Huang S, Yang M, Liu Y, Liu Y, Jiang R, Zhu F, Ouyang G. Anal. Chem., 2015, 87(20):10593.
[45] Qu Q, Gu C, Gu Z, Shen Y, Wang C, Hu X. J. Chromatogr. A, 2013, 1282:95.
[46] Wang S, Jiang S P, Wang X. Nanotechnology, 2008, 19(26):265601.
[47] Xia X, Leidy R B. Anal. Chem., 2001, 73, 9):2041.
[48] Xu L, Feng J, Liang X, Li J, Jiang S. J. Sep. Sci., 2012, 35(12):1531.
[49] Qiu J, Chen G, Liu S, Zhang T, Wu J, Wang F, Xu J, Liu Y, Zhu F, Ouyang G. Anal. Chem., 2016, 88(11):5841.
[50] Zheng J, Huang J, Xu F, Zhu F, Wu D, Ouyang G. Nanoscale, 2017, 9(17):5545.
[51] Bai Z, Pilote A, Sarker P K, Vandenberg G, Pawliszyn J. Anal. Chem., 2013, 85(4):2328.
[52] Huang S, Xu J, Wu J, Hong H, Chen G, Jiang R, Zhu F, Liu Y, Ouyang G. Talanta, 2017, 168:263.
[53] Reiche N, Mothes F, Fiedler P, Borsdorf H. Environ. Monit. Assess., 2013, 185(9):7133.
[54] O'Connell S G, Kerkvliet N I, Carozza S, Rohlman D, Pennington J, Anderson K A. Environ. Int., 2015, 85:182.
[55] Allan I J, Bæk K, Kringstad A, Roald H E, Thomas K V. Environment international, 2013, 59:462.
[56] Zhang X, Es-Haghi A, Musteata F M, Ouyang G, Pawliszyn J. Anal. Chem., 2007, 79(12):4507.
[57] Es-Haghi A, Zhang X, Musteata F M, Bagheri H, Pawliszyn J. Analyst, 2007, 132(7):672.
[58] Cudjoe E, Bojko B, de Lannoy I, Saldivia V, Pawliszyn J. Angew. Chem. Int. Ed., 2013, 52(46):12124.
[59] Bessonneau V, Zhan Y, de Lannoy I A, Saldivia V, Pawliszyn J. J. Chromatogr. A, 2015, 1424:134.
[60] Vuckovic D, de Lannoy I, Gien B, Shirey R E, Sidisky L M, Dutta S, Pawliszyn J. Angew. Chem. Int. Ed., 2011, 50(23):5344.
[61] Lord H L, Zhang X, Musteata F M, Vuckovic D, Pawliszyn J. Nature Protocols, 2011, 6(6):896.
[62] Vuckovic D, Risticevic S, Pawliszyn J. Angew. Chem. Int. Ed., 2011, 50(25):5618.
[63] Vuckovic D, de Lannoy I, Gien B, Yang Y, Musteata F M, Shirey R, Sidisky L, Pawliszyn J. J. Chromatogr. A, 2011, 1218(21):3367.
[64] Wang S, Oakes K D, Bragg L M, Pawliszyn J, Dixon G, Servos M R. Chemosphere, 2011, 85(9):1472.
[65] Xu J, Luo J, Ruan J, Zhu F, Luan T, Liu H, Jiang R, Ouyang G. Environ. Sci. Technol., 2014, 48(14):8012.
[66] Adolfsson-Erici M, Åkerman G, McLachlan M S. Chemosphere, 2012, 88(1):62.
[67] Qiu J, Chen G, Zhou H, Xu J, Wang F, Zhu F, Ouyang G. Sci. Total Environ., 2016, 550:1134.
[68] Qiu J, Chen G, Xu J, Luo E, Liu Y, Wang F, Zhou H, Liu Y, Zhu F, Ouyang G. J. Hazard. Mater., 2016, 316:52.
[69] Chen G, Jiang R, Qiu J, Cai S, Zhu F, Ouyang G. Chemosphere, 2015, 138:584.
[1] 殷立, 徐剑桥*, 黄周兵, 陈国胜, 郑娟, 欧阳钢锋*. 基于新型材料的固相微萃取探针的制备与应用[J]. 化学进展, 2017, 29(9): 1127-1141.
[2] 韩强, 王宗花, 张晓琼, 丁明玉. 石墨烯及其复合材料在样品前处理中的应用[J]. 化学进展, 2014, 26(05): 820-833.
[3] 单国强, 孙怀华, 侯征, 祝凌燕. 衍生化技术用于全氟烷酸化合物色谱分析的现状与趋势[J]. 化学进展, 2012, (10): 2019-2027.
[4] 许志刚*, 刘智敏, 杨保民, 字富庭. 替代模板分子印迹技术在样品前处理中的应用[J]. 化学进展, 2012, 24(08): 1592-1598.
[5] 余琼卫, 冯钰锜. 液相沉积法(LPD)在分析化学中的应用[J]. 化学进展, 2011, 23(6): 1211-1223.
[6] 陈金美,曾景斌,陈文锋,黄小丽,陈曦. 新型固相微萃取涂层的研究进展*[J]. 化学进展, 2009, 21(09): 1922-1929.
[7] 蔡亚岐,刘稷燕,江桂斌. 固相微萃取-液相色谱联用技术研究进展*[J]. 化学进展, 2004, 16(05): 708-.
[8] 易军,李云春,弓振斌. 食品中农药残留分析的样品前处理技术进展*[J]. 化学进展, 2002, 14(06): 415-.
[9] 何翊,黄骏雄,贾金平. 固相微萃取技术与环境样品前处理[J]. 化学进展, 1998, 10(01): 74-.
[10] 黄骏雄. 样品制备与处理的进展--无溶剂萃取技术[J]. 化学进展, 1997, 9(02): 179-.