English
新闻公告
More
化学进展 2017, Vol. 29 Issue (11): 1285-1296 DOI: 10.7536/PC170567 前一篇   后一篇

• 综述 •

二维原子晶体材料的制备与应变传感特性研究

朱文杰1, 台国安1,2*, 王旭峰1,2, 古其林1,2, 伍增辉1,2, 朱孔军1,2*   

  1. 1. 南京航空航天大学航空宇航学院 机械结构力学及控制国家重点实验室 南京 210016;
    2. 南京航空航天大学材料科学与技术学院 南京 210016
  • 收稿日期:2017-05-31 修回日期:2017-08-11 出版日期:2017-11-15 发布日期:2017-10-27
  • 通讯作者: 台国安,e-mail:taiguoan@nuaa.edu.cn;朱孔军,e-mail:kjzhu@nuaa.edu.cn E-mail:taiguoan@nuaa.edu.cn;kjzhu@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.61474063,61774085,51672130),江苏省自然科学基金项目(No.BK20151475),中央高校基本科研业务费专项资金(No.NE2017101),江苏省高校优势学科建设工程和江苏省“六大人才高峰”项目(XCL-046)资助

Fabrication and Strain Sensing Properties of Two-Dimensional Atomic Crystal Materials

Wenjie Zhu1, Guoan Tai1,2*, Xufeng Wang1,2, Qilin Gu1,2, Zenghui Wu1,2, Kongjun Zhu1,2*   

  1. 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2017-05-31 Revised:2017-08-11 Online:2017-11-15 Published:2017-10-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61474063, 61774085, 51672130), the Natural Science Foundation of Jiangsu Province (No. BK20151475), the Fundamental Research Funds for the Central Universities (No. NE2017101), the Priority Academic Program Development of Jiangsu Higher Education Institutions,and the Six Talent Peaks Project in Jiangsu Province (XCL-046).
二维原子晶体材料由于具有优异的光、电、力、磁和热学等性能而引起了广泛的研究兴趣。尤其,二维原子晶体材料在微小形变下可以产生较大的电阻变化,且能够承受比相应体材料更大的弹性应变而不至于使其结构破坏,在应变传感器方面具有重要的潜在应用价值,并且有望构建在各种条件下适用的柔性集成化的电子器件。目前,二维原子晶体材料备受关注的是石墨烯、二硫化钼和黑磷。本文从上述三种典型二维材料的基本物性出发,基于其物理性质和微观结构从理论上解释二维材料的应变传感特性,并详细介绍二维材料的各种制备方法如机械剥离法、溶液法和化学气相沉积法(CVD)等。在材料制备的基础上,阐述了石墨烯、二硫化钼、黑磷在应变传感领域如健康监测、可穿戴器件、电子皮肤等方面的具体应用,并展望了二维材料未来的研究方向与应用前景。
Two-dimensional atomic crystal materials have attracted a wide range of research interests due to their excellent optical, electrical, mechanical, magnetic and thermal properties. In particular, two-dimensional atomic crystal materials can produce a large resistance change steadily under the micro-deformation. They can bear a greater elastic strain than the corresponding bulk material without causing breaking of the structures. The characteristic makes them have an important potential application for the high-performance strain sensors. Besides, they are expected to fabricate flexible integrated electronic devices which are appropriate for all kinds of working condition. At present, the studies related to two-dimensional atomic crystal materials have mainly concentrated on graphene, molybdenum disulfide and black phosphorus. In this review, we firstly introduce the basic properties of the three typical two-dimensional materials and explain theoretically their strain sensing characteristics based on their physical property and microstructure. Secondly, some important methods for preparing the 2D materials, such as micromechanical exfoliation, solution exfoliation and chemical vapor deposition (CVD), are summarized. Thirdly, the applications of the 2D materials in the strain sensing fields, such as health monitoring, wearable devices and electronic skin, are introduced in detailed. Finally, we present the future research direction and application prospect of two-dimensional materials.
Contents
1 Introduction
2 Basic physical properties of 2D materials
2.1 Graphene
2.2 MoS2
2.3 Phosphorene
2.4 Theory explanation for strain sensing
3 Synthesis of 2D materials
3.1 Mechanical exfoliation methods
3.2 Solution methods
3.3 Chemical vapor deposition
4 Application in strain sensing
4.1 Graphene
4.2 MoS2
4.3 Phosphorene
5 Conclusion

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Proc. Natl. Acad. Sci. U.S.A., 2005, 102:10451.
[3] Wu M, Zeng X. Nano Lett., 2016, 16:3236.
[4] Zhao S J, Kang W, Xue J M. Appl. Phys. Lett., 2014, 104:13.
[5] Tai G, Hu T, Zhou Y, Wang X, Kong J, Zeng T, You Y, Wang Q. Angew. Chem. Int. Ed., 2015, 54:15473.
[6] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Chen S M L, Wu K H. Nat.Chem., 2016, 8:564.
[7] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Brandon L F, Santiago U, Jeffrey R, Yacaman M J, Ponce A, Oganov A R, Mark C, Guisinger N P. Science, 2015, 350:1513.
[8] Schwierz F. Nat. Nano, 2010, 5:487.
[9] Sundaram R S, Navarro C G, Balasubramaniam K, Burghard M, Kern K. Adv. Mater., 2008, 20:3050.
[10] Li X H, Choy W C H, Huo L J, Xie F X, Sha W E I, Ding B F, Guo X, Li Y F, Hou J H, You J B, Yang Y. Adv. Mater., 2012, 24:3046.
[11] Michael E, Mathias S, Phaedon A. Nano Lett., 2014, 14:6414.
[12] Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B. Appl. Phys. Lett., 2014, 104:103106.
[13] Mayorga-Martinez C C, Sofer Z, Pumera M. Angew. Chem. Int. Ed., 2015, 54:14317.
[14] Dai J, Zeng X C. J. Phys. Chem. Lett., 2014, 5:1289.
[15] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Nat. Nanotechnol., 2013, 8:497.
[16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011, 6:147.
[17] Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y, Takenobu T. Nano Lett., 2012, 12:4013.
[18] Gao M R, Xu Y F, Jiang J, Yu S H. Chem. Soc. Rev., 2013, 42:2986.
[19] Park M, Park Y, Chen X, Park Y K, Kim M S, Ahn J H. Adv. Mater., 2016, 28:2556.
[20] Shi G, Zhao Z H, Pai J H, Lee I, Zhang L Q, Stevenson C, Ishara K, Zhang R J, Zhu H W, Ma J. Adv. Funct. Mater., 2016, 2:619.
[21] Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D, Zhu H. Adv. Funct. Mater., 2014, 24:4666.
[22] Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S, Ferrari A C. Nano Lett., 2007, 7:2711.
[23] Katsnelson M. Mater. Today, 2007, 10:20.
[24] Balandin A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[25] Chae H, Siberio-Pérez D, Kim J, Go Y B, Eddaoudi M, Matzger A, O'Keeffe M, Yaghi1 O M. Nature, 2004, 427:523.
[26] Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L. Carbon, 2014, 68:258.
[27] Lee C, Wei X, Kysar J, Hone J. Science, 2008, 321:385.
[28] Xu M S, Liang T, Shi M M, Chen H Z. Chem. Rev., 2013, 113:3766.
[29] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105:136805.
[30] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli, G, Wang F. Nano Lett., 2010, 10:1271.
[31] Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y T, Li L J, Guo W, Lau S P. ACS Nano, 2013, 7:7126.
[32] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Nat. Nanotechnol., 2014, 9:372.
[33] Asahina H, Shindo K, Morita A. J. Phys. Soc. Jpn., 1982, 51:1193.
[34] Qiao J, Kong X, Hu Z X, Yang F, Ji W. Nat. Commun., 2014, 5:4475.
[35] Li L, Kim J, Jin C, Ye G, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X, Zhang Y, Wang F. Nat. Nanotechnol., 2016, 12:21.
[36] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. ACS Nano, 2014, 8:4033.
[37] Guo X F, Qiu J P, Guo W L. Nanotechnology, 2016, 27:505702.
[38] Pan D X, Li Y, Wang T C, Guo W L. Acta Mech. Sin., 2017,33:71.
[39] Liu X F, Pan D X, Hong Y Z, Guo W L. Am. Phys. Soc., 2014, 112:205502.
[40] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[41] Xie L M, Jiao L Y, Dai H J. J. Am. Chem. Soc., 2010, 132:14751.
[42] Yin Z Y, Li H. ACS Nano, 2011, 6:74.
[43] Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8:63.
[44] Jeong H K, Lee Y P, Lahaye R J W E, Park M H, An K H, Kim I J, Yang C W, Park C Y, Ruoff R S, Lee Y H. J. Am. Chem. Soc., 2008, 130:1362.
[45] Zhang L, Liang J J, Huang Y, Ma Y F, Wang Y, Chen Y S. Carbon, 2009, 47:3365.
[46] Becerril H A, Mao J, Liu Z, Stoltenberg R M, Randall M, Bao Z, Chen Y. ACS Nano, 2008, 2:463.
[47] Chang H X, Sun Z H, Yuan Q H, Ding F, Tao X M, Yan F, Zheng Z J. Adv. Mater., 2010, 22:4872.
[48] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3:101.
[49] Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H. Angew. Chem. Int. Edit., 2011, 50:11093.
[50] Gopalakrishnan D, Damien D, Shaijumon M M. ACS Nano, 2014, 8:5297.
[51] Sun Z B, Xie H H, Tang S Y, Yu X F, Guo Z N, Shao J D, Zhang H, Huang H, Wang H Y, Chu P K. Angew. Chem. Int. Ed., 2015, 54:11526.
[52] Obraztsov A N, Obraztsova E A, Tyurnina A V. Carbon, 2007, 45:2017.
[53] Yu Q, Lian J, Siriponglert S. Appl. Phys. Lett., 2008, 93:113103.
[54] Li X S, Cai W W, Colombo L G, Ruoff R S. Nano Lett., 2009, 9:4268.
[55] Bae S, Kim H, Lee Y, Xu X F, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y, Kim K S, Özyilmaz B, Ahn J, Hong B H, Iijima S.Nat. Nanotechnol., 2010, 5:574.
[56] Ling X, Lee Y H, Lin Y X, Fang W J, Yu L L, Dresselhaus M S, Kong J. Nano lett., 2014, 14:464.
[57] Wang X S, Feng H B, Wu Y M, Jiao L Y. J. Am. Chem. Soc., 2013, 135:5304.
[58] Tai G, Zeng T, Yu J, Zhou J, You Y, Wang X, Wu H, Sun X, Hu T, Guo W. Nanoscale, 2016, 8:2234.
[59] Wang Y, Yang R, Shi Z W, Zhang L Z, Shi D X, Wang E G, Zhang G Y. ACS Nano, 2011, 5:3645.
[60] Li X, Sun P, Fan L, Zhu M, Wang K, Zhong M, Wei J, Wu D, Cheng Y, Zhu H. Sci. Rep., 2012, 2:395.
[61] Yang T, Wang W, Zhang H, Li X, Shi J, He Y, Zheng Q, Li Z, Zhu H. ACS Nano, 2015, 9:10867.
[62] Fei R, Yang L. Nano Lett., 2014, 14:2884.
[63] Wu H R, Liu X F, Yin J, Zhou J X, Guo W L. Small, 2016, 12:5276.
[1] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[2] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[3] 张辉, 王珊珊, 余金山. 低对称性二维ReS2及其异质结的化学气相沉积法制备及性质[J]. 化学进展, 2022, 34(6): 1440-1452.
[4] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[5] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[6] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[7] 范路洁, 陈莉, 何崟, 刘皓. 基于3D导电材料的柔性应力/应变传感器[J]. 化学进展, 2021, 33(5): 767-778.
[8] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[9] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[10] 王睿, 台国安, 伍增辉, 邵伟, 候闯, 郝金钱. 硼纳米结构的理论和实验研究[J]. 化学进展, 2019, 31(12): 1696-1711.
[11] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.
[12] 陈诚, 董志强, 陈昊文, 陈杨, 朱志刚, 施惟恒. 二维光子晶体[J]. 化学进展, 2018, 30(6): 775-784.
[13] 王宏磊, 吕文珍, 唐星星, 陈铃峰, 陈润锋, 黄维. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.
[14] 孔龙娟, 李晖*. 衬底调制下的硼墨烯、硅烯、锗烯等单元素二维材料的原子与电子结构[J]. 化学进展, 2017, 29(4): 337-347.
[15] 尤运城, 曾甜, 刘劲松, 胡廷松, 台国安. 类石墨烯二硫化钨薄膜的化学气相沉积法制备及其应用[J]. 化学进展, 2015, 27(11): 1578-1590.