English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1008-1020 DOI: 10.7536/PC170566 前一篇   后一篇

• 综述 •

环境持久性自由基的产生机理及环境化学行为

韩林, 陈宝梁*   

  1. 浙江大学环境科学系 浙江省有机污染过程与控制重点实验室 杭州 310058
  • 收稿日期:2017-05-31 修回日期:2017-07-18 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 陈宝梁,e-mail:blchen@zju.edu.cn E-mail:blchen@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21425730,21537005)资助

Generation Mechanism and Fate Behaviors of Environmental Persistent Free Radicals

Lin Han, Baoliang Chen*   

  1. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
  • Received:2017-05-31 Revised:2017-07-18 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21425730, 21537005).
环境持久性自由基因其能在环境中持续存在且具有潜在环境毒性效应而逐渐受到关注。与瞬时自由基相比,环境持久性自由基的研究相对较少,其产生机理及环境化学行为等方面值得深入研究。本文评述了环境持久性自由基的检测方法、生成机理、种类,环境稳定性、持久性与反应性,以及环境效应及消除方法等方面的研究进展;展望了未来研究方向,并提出环境持久性自由基的迁移转化行为及环境效应是环境化学领域新的研究方向。
Environmental persistent free radicals (EPFRs) can persist in environment for hours to days, and have potential environmental and public health impacts, which has attracted more and more attention in recent years. Environmental persistent free radicals are found to exist in a variety of environmental media, such as combustion particles and organic contaminated soil, and they are considered to be an emerging pollutant recently. Compared with transient free radicals, environmental persistent free radicals have received relatively less attention, and the generating mechanisms and environmental impacts remain unclear. Meanwhile, environmental persistent free radicals are widely distributed in the environment, which makes them more complex in their research. This review highlights EPFRs from the following aspects:detection methods, generating mechanisms, speciation types, environmental characteristics (persistence, stability, and reactivity), the harm to the environment and the elimination method. By studying the fate behaviors of environmental persistent free radicals, this article proposes a possible migration pathway in environment. The purpose of this review is to have a more comprehensive understanding of the EPFRs, especially to help reduce the harm to the human and environment, and provide scientific basis for researchers to have a deeper study on it.
Contents
1 Introduction
2 Environmental persistent free radicals (EPFRs)
3 Generation mechanism of EPFRs
3.1 The media of the EPFRs formation
3.2 The precursors of the EPFRs
3.3 The influential conditions of EPFRs formation
3.4 The formation mechanism of the EPFRs
4 Species of EPFRs
5 Persistence and stability of EPFRs
6 Reactivity of EPFRs and its application on the environmental pollution control
7 Potential hazards of EPFRs and its elimination methods
7.1 Potential hazards of EPFRs
7.2 Elimination methods of EPFRs
8 Environmental chemistry behaviors of EPFRs
9 Conclusion

中图分类号: 

()
[1] Gomberg M. J. Am. Chem. Soc., 1900, 22:757.
[2] Leighton P A. Photochemistry of Air Pollution, 1961, 89.
[3] 贾曾荣(Jia Z R). 北京教育学院学报(Journal of Beijing Institute of Education), 1998, 40.
[4] 朱利中(Zhu L Z).环境化学(Environmental Chemistry). 北京:高等教育出版社(Beijing:China Higher Education Press), 2011. 55.
[5] Heimer N E. J. Org. Chem., 1977, 42:3767.
[6] Maskos Z, Khachatryan L, Dellinger B. Energy Fuels,2008, 22:1027.
[7] Maskos Z, Dellinger B. Energy Fuels, 2008, 22:382.
[8] Maskos Z, Khachatryan L, Dellinger B. Energy Fuels, 2005, 19:2466.
[9] Maskos Z, Dellinger B. Energy Fuels, 2008, 22:1675.
[10] Maskos Z, Khachatryan L, Cueto R, Pryor W A, Dellinger B. Energy Fuels, 2005, 19:791.
[11] Pryor W A, Hales B J, Premovic P I,Church D F. Science, 1983, 220:425.
[12] Gehling W, Dellinger B. Environ. Sci. Technol., 2013, 47:8172.
[13] Shi T, Schins R P E, Knaapen A M, Kuhlbusch T, Pitz M, Heinrich J, Borm P J A. J. Environ. Monit., 2003, 5:550.
[14] Gehling W, Khachatryan L, Dellinger B. Environ. Sci. Technol., 2014, 48:4266.
[15] Arangio A M, Tong H, Socorro J, Pöschl U, Shiraiwa M. Atmo. Chem. Phys., 2016, 16:13105.
[16] Squadrito G L, Cueto R, Dellinger B, Pryor W A. Free Radical Biol. Med., 2001, 31:1132.
[17] Dellinger B, Pryor W A, Cueto R, Squadrito G L, Deutsch W A. P. Combust. Inst., 2000, 28:2675.
[18] Dellinger B, Pryor W A, Cueto R, Squadrito G L, Hegde V, Deutsch W A. Chem. Res. Toxicol., 2001, 14:1371.
[19] Gong F, Luo L, Yao Y, Dai D, Lu W, Chen W. Chem. Eng. J., 2016, 304:440.
[20] Yang J, Pan B, Li H, Liao S, Zhang D, Wu M, Xing B. Environ. Sci. Technol., 2016, 50:694.
[21] Liao S, Pan B, Li H, Zhang D, Xing B. Environ. Sci. Technol., 2014, 48:8581.
[22] Fang G, Gao J, Liu C, Dionysiou D D, Wang Y, Zhou D. Environ. Sci. Technol., 2014, 48:1902.
[23] Fang G, Liu C, Gao J, Dionysiou D D, Zhou D. Environ. Sci. Technol., 2015, 49:5645.
[24] Fang G, Zhu C, Dionysiou D D, Gao J,Zhou D. Bioresour. Technol., 2015, 176:210.
[25] Gao X, Feng J. Mini-Rev. Org. Chem., 2011, 8:438.
[26] Kiruri L W, Dellinger B, Lomnicki S. Environ. Sci. Technol., 2013, 47:4220.
[27] Dellinger B, Lomnicki S, Khachatryan L, Maskos Z, Hall R W, Adounkpe J, McFerrin C, Truong H. P. Combust. Inst., 2007, 31:521.
[28] Khachatryan L, Dellinger B. Environ. Sci. Technol., 2011, 45:9232.
[29] Khachatryan L, Vejerano E, Lomnicki S, Dellinger B. Environ. Sci. Technol., 2011, 45:8559.
[30] Khachatryan L, McFerrin C A, Hall R W, Dellinger B. Environ. Sci. Technol., 2014, 48:9220.
[31] Kelley M A, Hebert V Y, Thibeaux T M, Orchard M A, Hasan F, Cormier S A, Thevenot P T, Lomnicki S M, Varner K J, Dellinger B, Latimer B M,Dugas T R. Chem. Res. Toxicol., 2013, 26:1862.
[32] Kelley M A, Thibeauxa T, Heberta V Y, Cormierb S A, Lomnickic S, Dellinger B, DugasT R. Free Radical Biol. Med., 2011, 51:134.
[33] Balakrishna S, Lomnicki S, McAvey K M, Cole R B, Dellinger B,Cormier S A. Part. Fibre. Toxicol., 2009, 6:1.
[34] Valko M, Rhodes C J, Moncol J, Izakovic M, Mazur M. Chem.Biol. Interact., 2006, 160:1.
[35] Ziech D, Franco R, Georgakilas A G, Georgakila S, Malamou-Mitsi V, Schoneveld O, Pappa A, Panayiotidis M I. Chem. Biol., Interact., 2010, 188:334.
[36] 杨颖(Yang Y), 孙振亚(Sun Z Y). 矿物岩石地球化学通报(Bulletin of Mineral, Petrology and Geochemistry), 2012, 31:287.
[37] 阮秀秀(Ruan X X), 孙万雪(Sun W X), 程玲(Cheng L), 钱光人(Qian G R). 上海大学学报(Journal of Shanghai University (Natural Science)), 2016, 22:114.
[38] Valavanidis A, Iliopoulos N, Gotsis G, Fiotakis K. J. Hazard. Mater., 2008, 156:2803.
[39] Meng J, Smirnova T I, Song X, Moore A, Ren X, Kelley S, Park S, Tilotta D. RSC Advances, 2014, 4:29840.
[40] dela Cruz A L N, Cook R, Dellinger B, Lomnicki S M, Donnelly K C, Kelley M A, Cosgriff D. Environ.Sci. Proc.Impacts, 2014, 16:44.
[41] dela Cruz A L N, Gehling W, Lomnicki S, Cook R, Dellinger B. Environ. Sci. Technol., 2011, 45:6356.
[42] dela Cruz A L N, Cook R L, Lomnicki S M, Dellinger B. Environ. Sci. Technol., 2012, 46:5971.
[43] Jia H, Zhao S, Nulaji G, Tao K, Wang F, Sharma V K, Wang C. Environ. Sci. Technol., 2017, 51:6000.
[44] Jia H, Nulaji G, Gao H, Wang F, Zhu Y, Wang C. Environ. Sci. Technol., 2016, 50:6310.
[45] Herring P, Khachatryan L, Lomnicki S, Dellinger B. Combust Flame, 2013, 160:2996.
[46] Esaka Y, Okumura N, Uno B, Goto M. Electrophoresis, 2003, 24:1635.
[47] Jung H, Guo B, Anastasio C, Kennedy I M. Atmos. Environ., 2006, 40:1043.
[48] Gligorovski S, Strekowski R, Barbati S, Vione D. Chem. Rev., 2015, 115:13051.
[49] Sterniczuk M, Sad?o J, Strzelczak G, Michalik J. Micropor. Mesopor. Mater., 2014, 195:112.
[50] Bahrle C, Custodis V, Jeschke G, van Bokhoven J A, Vogel F. ChemSusChem, 2014, 7:2022.
[51] Sablier M, Fujii T. Chem. Rev., 2002, 102:2856.
[52] Fleisher A J, Bjork B J, Bui T Q, Cossel K C, Okumura M, Ye J. The Journal of Physical Chemistry Letters, 2014, 5:2241.
[53] Andreozzi L, Castelvetro V, Ciardelli G, Corsi L, Faetti M, Fatarella E, Zulli F. J.Colloid Interface Sci., 2005, 289:455.
[54] He W, Liu Q, Shi L, Liu Z, Ci D, Lievens C, Guo X, Liu M. Bioresour. Technol., 2014, 156:372.
[55] Lomnicki S, Truong H, Vejerano E, Dellinger B. Environ. Sci. Technol., 2008, 42:4982.
[56] Kiruri L W, Khachatryan L, Dellinger B, Lomnicki S. Environ. Sci. Technol., 2014, 48:2212.
[57] Patterson M C, Keilbart N D, Kiruri L W, Thibodeaux C A, Lomnicki S, Kurtz R L, Poliakoff E D, Dellinger B, Sprunger P T. Chem. Phys., 2013, 422:277.
[58] Vejerano E, Lomnicki S, Dellinger B. Environ. Sci. Technol., 2011, 45:589.
[59] Vejerano E, Lomnicki S M, Dellinger B. Environ. Sci. Technol., 2012, 46:9406.
[60] Patterson M C, DiTusa M F, McFerrin C A, Kurtz R L, Hall R W, Poliakoff E D, Sprunger P T. Chem. Phys. Lett., 2017, 670:5.
[61] Assaf N W, Altarawneh M, Oluwoye I, Radny M, Lomnicki S M, Dlugogorski B Z. Environ. Sci. Technol., 2016, 50:11094.
[62] Vejerano E, Lomnicki S, Dellinger B. J.Environ.Monit., 2012, 14:2803.
[63] Chen B, Chen Z, Lv S. Bioresour. Technol., 2011, 102:716.
[64] Xiao X, Chen Z, Chen B. Scientific Reports, 2016, 6:22644.
[65] Xiao X, Chen B. Environ. Sci. Technol., 2017, 51:5473.
[66] Chen X, Chen B. Environ. Sci. Technol., 2016, 50:8568.
[67] 路遥(Lu Y), 魏贤勇(Wei X Y), 宗志敏(Zong Z M), 陆永超(Lu Y C), 赵炜(Zhao W), 曹景沛(Cao J P). 化学进展(Progress in Chemistry), 2013, 25:838.
[68] Li H, Guo H, Pan B, Liao S, Zhang D, Yang X, Min C, Xing B. Sci.Rep., 2016, 6:24494.
[69] Adounkpe J, Khachatryan L, Dellinger B, Ghosh M. Energy & Fuels, 2009, 23:1551.
[70] 王婷(Wang T), 李浩(Li H), 郭惠莹(Guo H Y), 程正奇(Cheng Z Q), 潘波(Pan B). 环境化学(Environmental Chemistry), 2016, 35:421.
[71] Maskos Z, Khachatryan L, Dellinger B. Energy Fuels, 2013, 27:5306.
[72] Zhu B, Zhao H, Kalyanaraman B, Liu J, Shan G, Du Y, Frei B. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:3698.
[73] Zhu B, Shan G, Huang C, Kalyanaraman B, Mao L, Du Y. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:11466.
[74] Zhu B, Kalyanaraman B, Jiang G. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:17575.
[75] Yang L, Liu G, Zheng M, Zhao Y, Jin R, Wu X, Xu Y. Environ. Sci. Technol., 2017, 51:4999.
[76] 王天娇(Wang T J), 陈彤(Chen T), 詹明秀(Zhan M X), 郭颖(Guo Y), 李晓东(Li X D). 环境科学(Environmental Science), 2016, 37:1163.
[77] Li H, Pan B, Liao S, Zhang D, Xing B. Environ. Pollut., 2014, 188:153.
[78] Riesz P, BerdahIt D, Christman C L. Environ. Health Perspect., 1985, 64:233.
[79] Velasco L F, Maurino V, Laurenti E, Ania C. Applied Catalysis A:General, 2013, 453:310.
[80] Wetter C, Studer A. Chem.Commun., 2004, 174.
[81] Suh Y, Buettner G R, Venkataraman S, Treimer S E, Robertson L W, Ludewig G. Environ. Sci. Technol., 2009, 43:2581.
[82] Han C, Liu Y, Ma J, He H. Proc. Natl. Acad. Sci. U.S.A., 2012, 109:21250.
[83] Pedersen J A. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2002, 58:1257.
[84] Tedde J M. Angew. Chem. Int. Ed., 1982, 21:401.
[85] Song Y, Buettner G R, Parkin S, Wagner B A, Roberston L W, Lehmler H J. J. Org. Chem., 2008, 8296.
[86] Ulas G, Lemmin T, Wu Y, Gassner G T, DeGrado W F. Nat. Chem., 2016, 8:354.
[87] Fang G, Gao J, Dionysiou D S, Liu C, Zhou D. Environ. Sci. Technol., 2013, 47:4605.
[88] Wang J, Xu L. Crit. Rev. Environ. Sci. Technol., 2012, 42:251.
[89] Jiang J, Bauer I, Paul A, Kappler A. Environ. Sci. Technol., 2009, 43:3639.
[90] 杨世迎(Yang S Y), 张翱(Zhang A), 任腾飞(Ren T F),张宜涛(Zhang Y T). 化学进展(Progress in Chemistry), 2017, 29:540.
[91] Jiang B, Yao Y, Xie R, Dai D, Lu W, Chen W, Zhang L. Appl. Catal. B:Environmental, 2016, 183:291.
[92] Lomnicki S, Gullett B, Stoger T, Kennedy I, Diaz J, Dugas T R, Varner K, Carlin D J, Dellinger B, Cormier S A. Int. J. Toxicol., 2014, 33:3.
[93] Lord K, Moll D, Lindsey J K, Mahne S, Raman G, Dugas T, Cormier S, Troxlair D, Lomnicki S, Dellinger B, Varner K. J. Recept. Signal Transduct. Res., 2011, 31:157.
[94] Reed J R, Cawley G F, Ardoin T G, Dellinger B, Lomnicki S M, Hasan F, Kiruri L W, Backes W L. Toxicol.Appl.Pharmacol., 2014, 277:200.
[95] Lee G I, Saravia J, You D, Shrestha B, Jaligama S, Hebert V Y, Dugas T R, Cormier S A. Particle and Fibre Toxicology, 2014, 11:1.
[96] Valko M, Jomova K, Rhodes C J, Kuca K, Musilek K. Arch.Toxicol., 2016, 90:1.
[97] Truong H, Lomnicki S, Dellinger B. Environ. Sci. Technol., 2010, 44:1933.
[98] Lucarini M, Pedulli G F. Chem. Soc. Rev., 2010, 39:2106.
[99] Rimmer D L. Eur. J. Soil Sci., 2006, 57:91.
[100] Song W, Chen W, Cooper W J, Greaves J, Miller G E. J. Phys. Chem. A, 2008, 112:7411.
[101] Perez-Bonilla M, SalidoS,van Beek T A,Altarejos J. J. Agric.FoodChem., 2014, 62:144.
[102] Mandal M, Mukherji S. J.Environ.Biol., 2001, 22:301.
[103] 杨莉莉(Yang L L), 刘国瑞(Liu G R), 郑明辉(Zheng M H).中国化学会第30届学术年会(The 30th National Conference of the Chinese Chemical Society).大连(Dalian), 2016.
[104] Qu X, Fu H, Mao J, Ran Y, Zhang D, Zhu D. Carbon, 2016, 96:759.
[105] Fu H, Liu H, Mao J, Chu W, Li Q, Alvarez P J J, Qu X, Zhu D. Environ. Sci. Technol., 2016, 50:1218.
[106] Liu R, Zhu X, Chen B. Sci.Rep., 2017, 7:40711.
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[8] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[9] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[10] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[11] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[12] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[13] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[14] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[15] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.