English
新闻公告
More
化学进展 2017, Vol. 29 Issue (11): 1366-1394 DOI: 10.7536/PC170559 前一篇   后一篇

• 综述 •

四氧化三铁纳米材料的制备与应用

朱脉勇*, 陈齐, 童文杰, 阚加瑞, 盛维琛   

  1. 江苏大学材料科学与工程学院 镇江 212013
  • 收稿日期:2017-05-27 修回日期:2017-10-10 出版日期:2017-11-15 发布日期:2017-10-27
  • 通讯作者: 朱脉勇,e-mail:maiyongzhu@ujs.edu.cn E-mail:maiyongzhu@ujs.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21403091),江苏省自然科学基金项目(No.BK20130486)和江苏大学优秀人才启动基金(No.12JDG093)资助

Preparation and Application of Fe3O4 Nanomaterials

Maiyong Zhu*, Qi Chen, Wenjie Tong, Jiarui Kan, Weichen Sheng   

  1. School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
  • Received:2017-05-27 Revised:2017-10-10 Online:2017-11-15 Published:2017-10-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21403091), the Natural Science Foundation of Jiangsu Province (No. BK20130486), and the Project Funded by Jiangsu University for Senior Intellectuals (No. 12JDG093).
近年来磁性Fe3O4纳米材料因其独特的物理化学性质如量子尺寸效应、表面界面效应、电学特性以及磁学特性等,而引起了广泛的研究,并在诸多领域(如环境、能源)具有潜在应用前景。本文总结了近年来国内外制备Fe3O4的一些方法,主要包括:沉淀法、热分解法、水热法、微乳液法以及溶胶-凝胶法,同时对各种制备方法的优缺点进行了比较。在应用方面,着眼于Fe3O4良好的磁响应性,综述了Fe3O4纳米材料及其复合物作为吸附剂用于去除废水中的金属离子以及有机污染物;系统总结了Fe3O4在催化中的应用,包括其本身作为催化剂和作为催化剂活性组分(如贵金属纳米粒子、金属氧化物半导体纳米光催化剂、金属有机化合物等)的载体两个方面。另外,本文还介绍了Fe3O4纳米材料在能源存储(锂离子电池和超级电容器)以及生物医药(肿瘤诊疗、固定化酶和免疫分析)等方面的应用。最后,针对目前Fe3O4纳米材料在制备中存在的一些问题进行探讨并对今后的研究方向进行了展望。
Magnetic Fe3O4 nanomaterials, possessing unique physicochemical properties such as quantum size effect, surface interfacial effect, electrical properties and magnetic properties, have attracted intensive research interest and shown potential applications in many fields (such as enviroment, energy) during the past years. In this review, some methods for preparing Fe3O4 in recent years are summarized, including precipitation method, thermal decomposition method, hydrothermal method, microemulsion method and sol-gel method. The advantages and disadvantages of various preparation methods are compared. As for the application of Fe3O4 nanomaterials, the article firstly summarizes their application as adsorbent for removal of heavy metal ions and organic pollutants from wastewater. The application of Fe3O4 nanomaterials in catalysis, including Fe3O4 nanomaterials acting active species and acting as supports for active species (such as noble metal nanoparticles, transition metal oxide, as well as metallic organic compounds) is also overviewed in detail. While applied in environment treatment and chemical catalysis, the largest advantage of Fe3O4 nanomaterials is that they can be easily separated by magnetic separation. Furthermore the application of Fe3O4 nanomaterials in energy storage (such as lithium-ion batteries and super capacitors) and biomedicine (tumor diagnosis and treatment, immobilized enzyme and immunoassay) are also discussed in brief. Finally, some problems in the preparation of Fe3O4 nanomaterials and their future research directions are outlined.
Contents
1 Introduction
2 Synthesis strategies of Fe3O4 nanomaterials
2.1 Precipitation method
2.2 Hydrothermal method
2.3 Thermal decomposition
2.4 Sol-gel method
2.5 Microemulsion method
2.6 Other methods
3 Applications of Fe3O4 nanomaterials
3.1 Environmental treatment
3.2 Chemical catalysis
3.3 Energy storage
3.4 Biomedical
3.5 Other applications
4 Conclusion

中图分类号: 

()
[1] Gawande M B, Branco P S, Varma R S. Chem. Soc. Rev., 2013, 42:3371.
[2] Ghosh R, Pradhan L, Devi, Y P, Meena S S, Tewari R, Kumar A, Sharmar S, Gajbhiye N S, Vatsa R K, Pande B N, Ningthoujam R S. J. Mater. Chem., 2011, 21:13388.
[3] Nabiyouni G, Julaee M, Ghanbari D, Aliabadi P H, Safaie N. J. Ind. Eng. Chem., 2015, 21:599.
[4] 万栋(Wan D), 王光华(Wang G H), 李文兵(Li W B), 陈坤(Chen K), 李进(Li J). 化工新型材料(New Chem. Mater.), 2014, 9:170.
[5] Jiang Y J, Li G Z, Li X D, Zhang X G. J. Mater. Chem. A, 2014, 2:4779.
[6] Sesigur H, Acma E, Addmir O, Tekin A. Mater. Res. Bull., 1996, 31:1573.
[7] 孟哲(Meng Z), 张冬亭(Zhang D T), 王春平(Wang C P). 光谱实验室(Spectrosc. Lab), 2003, 20:489.
[8] Chen S Y, Feng J, Guo X F, Hong J M, Ding W P. Mater. Lett., 2005, 59:985.
[9] 王光华(Wang G H), 李文兵(Li W B), 万栋(Wan D), 陈坤(Chen K),胡琴(Hu Q). 中国科技论文(China Sciencepaper), 2014, 9:1024.
[10] Qu S C, Yang H B, Ren D W. J. Colloid Interface Sci.,1999, 215:190.
[11] Liu B, Xie W X, Wang D P, Huang W H. Mater. Lett., 2008, 62:3014.
[12] Qiu J D, Xiong M, Liang R P, Peng H P. Biosens. Bioelecron., 2009, 24:2649.
[13] Wu Z J, Wu J H, Xiang J H, Chun M S, Lee K. Colloids. Surf. A, 2006, 279:167.
[14] Guo H F, Hong Z, Lin H Y, Zhang J Q. Mater. Lett., 2008, 62:2196.
[15] Lei W, Liu Y S, Si X D, Xu J, Du W L, Yang J, Zhou T. J. Phys. Lett. A, 2017, 381:314.
[16] 杨华(Yang H), 黄可龙(Huang K L), 刘素琴(Liu S Q), 李卫(Li W). 磁性材料及器件(J. Magn. Mater. Devices), 2003, 34:4.
[17] Fan R, Chen X H, Potdar H S. Mater. Lett., 2002, 56:571.
[18] Zhu M Y, Diao G W. J. Phys. Chem. C, 2011, 115:18923.
[19] Wan J X, Chen X Y, Wang Z H, Yang X G, Qian Y T. J. Cryst. Growth, 2005, 276:571.
[20] Liu J, Sun Z K, Deng Y H, Zou Y, Li C H, Xiong L Q, Gao Y, Li F Y, Zhao D Y. Angew. Chem., 2009, 121:5989.
[21] Huang Y, Zhang L P, Huan W W, Liang X J, Liu X N, Yang Y X. Glass Phys. Chem., 2010, 36:325.
[22] Zhu L P, Liao G H, Bing N C, Wang L L, Xie H Y. J. Solid State Chem., 2011, 184:2405.
[23] Xuan S H, Wang F, Wang Y X, Jimmy C Y, Ken C F. J. Mater. Chem., 2010, 20:5086.
[24] Li X Y, Si Z J, Lei Y Q, Tang J K, Wang S, Su S Q, Song S Y, Zhao L J, Zhang H J. Cryst. Eng. Comm., 2010, 12:2060.
[25] Lv B, Xu Y, Gao Q, Wu D, Sun Y. J. Nanosci. Nanotechnol., 2010, 10:2348.
[26] Xie J, Zhang F, Aronova M, Lei Z, Xin L, Quan Q M, Liu G, Zhang G F, Choi K Y, Kim K Y, Sun X L. Lee S, Sun S H, Leapman R, Chen X Y. Nano, 2011, 5:3043.
[27] Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Angew. Chem. Int. Ed., 2005, 44:2782.
[28] Xuan S, Wang Y X, Yu J C, Leung K C. Chem. Mater., 2009, 21:5079.
[29] Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124:8204.
[30] Wang Y, Zhu Q S, Tao L. Cryst. Eng. Comm., 2011, 13:4652.
[31] Gao G H, Liu X H, Shi R R, Zhou K C, Shi Y G, Ma R Z, Muromachi E T, Qiu G Z. Cryst. Growth Des., 2010, 10:2888.
[32] Woo K, Hong J, Choi S, Lee H W, Ahn J P, Kim C S, Lee S W. Chem. Mater., 2004, 16(14):2814.
[33] Park J, Lee E, Hwang N M, Kang M, Kim S C, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hyeon T. Angew. Chem. Int. Ed. Engl., 2005, 44(19):2873.
[34] Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T. Nat. Mater., 2004, 3:891.
[35] Asuha S, Suyala B, Siqintana X, Zhao S. J. Alloys Compd., 2011, 509:2870.
[36] Jana N R, Chen Y, Peng X. Chem. Mater., 2004, 16:3931.
[37] Tang N J, Zhong W, Jiang H Y, Wu X L, Liu W, Du Y W. J. Magn. Magn. Mater., 2004, 282:92.
[38] 周洁(Zhou J), 马明(Ma M), 张宇(Zhang Y). 东南大学学报(J. Southeast Univ.), 2005, 35:616.
[39] Cui H, Liu Y, Ren W. Adv. Powder. Technol., 2013, 24:93.
[40] Xu J, Yang H B, Fu W Y, Fan W H, Liu B B, Zou G T. J. Magn. Magn. Mater., 2007, 309:307.
[41] Zhou Z H, Wang J, Liu X. Mater. Chem., 2001, 11:1704.
[42] Lu T, Wang J H, Yin J, Wang A Q, Wang, X D, Zhang T. Colloids Surf. A, 2013, 43:675.
[43] Zhang D, Tong Z, Li S, Zhang X, Ying A. Mater. Lett., 2008, 62:4053.
[44] 邱星屏(Qiu X P). 厦门大学学报(自然科学版)(J. Xiamen Univ. (Nat. Sci.)), 1993, 8:711.
[45] Morais P C, Azevedo R B, Rabelo D. Chem. Mater., 2003, 15:2485.
[46] Li Z, Sun Q, Gao M Y. Angew. Chem. Int. Ed., 2005, 44: 123.
[47] 蒋丽萍(Jiang L P), 邱建华(Qiu J H), 韦谷锡(Wei G X), 陆小朵(Lu X D). 化工新型材料(New Chem. Mater.),2015, 43:166.
[48] 崔琳(Cui L),刘臻龙(Liu Z L),郭世宇(Guo S Y). 现代电子技术(Modern Electronics Technique), 2015, 09:143.
[49] Zhu M, Diao G. Nanoscale, 2011, 3:2748.
[50] Teja A S, Koh P Y. Prog. Cryst. Growth Ch., 2009, 55:22.
[51] Horst M F, Lassalle V, Ferreira M L. Front. Environ. Sci. Eng., 2015, 9:746.
[52] Rajput S, Charles U, Pittman J, Mohan D. J. Colloid Interface Sci., 2016. 468:334.
[53] Sharma Y C, Srivastava V. J. Chem. Eng. Data, 2010, 56:819.
[54] Shen Y F, Tang J, Nie Z H, Wang Y D, Ren Y, Zuo L. Bioresourc. Technol., 2009, 100:4139.
[55] Wang T, Zhang L Y, Wang H Y, Yang W C, Fu Y C, Zhou W L, Yu W T, Xiang K S, Su Z, Dai S, Chai L Y. ACS Appl. Mater. Interfaces, 2013, 5:12449.
[56] Liu X, Hu Q, Fang Z, Zhang X, Zhang B. Langmuir, 2009, 25:3.
[57] Zhao J H, Liu J, Li N, Wang W, Nan J, Zhao Z W, Cui F Y. J. Chem. Eng., 2016, 304:737.
[58] Li S H, Liu L, Yu Y F, Wang G X, Zhang H L, Chen A B. J. Alloys Compd., 2017, 698:20.
[59] Qi Z J, Joshi T P, Liu R P, Liu H J, Qu J H. J. Hazard. Mater., 2017, 329:193.
[60] Wei S Y, Yang X H. Chin. J. Inorg. Chem., 2013. 29:2615.
[61] Song X M, Tan L C, Ma H Y, Guo Y, Zhu L, Gao J Y, Yang R J, Dong Q. Dalton Trans., 2017, 46:3347.
[62] Liu Y, Fu R Q, Sun Y, Zhou X X, Baig S A, Xu X H. Appl. Surf. Sci., 2016, 369:267.
[63] Wang Z X, Xu J, Hu Y J, Zhao H, Zhou J L, Liu Y, Lou Z, Xu X H. J. Taiwan Inst. Chem. Eng., 2016, 60, 394.
[64] Jin Y J, Liu F, Tong M P, Hou Y L. Hazard. Mater., 2012, 227:461.
[65] Peng X J, Luan Z K, Di Z C, Zhang Z G, Zhu C L. Carbon, 2005, 43:855.
[66] Min X, Yang W, Hui Y F, Gao C Y, Dang S, Sun Z M. J. Name., 2017, 53:30.
[67] Lin C C, Lin Y S, Ho J M. J. Alloys Compd., 2016, 666:153.
[68] Wu S P, Huang J C, Zhuo C H, Zhang F Y, Sheng W C, Zhu M Y. J. Inorg. Organomet. Polym., 2016, 26:632.
[69] Chaudhary G R, Saharan P, Kumar A, Mehta S K, Mor S, Umar A. J. Nanosci. Nanotechnol., 2013, 13:3240.
[70] Peng L, Qin P, Lei M, Zeng Q, Song H, Yang J, Shao J, Liao B, Gu J. J. Hazard. Mater., 2012, 193:209.
[71] Iram M, Guo C, Guan Y, Ishfaq A, Liu H. J. Hazard. Mater., 2010, 181:1039.
[72] Lu L, Li J, Yang P, Song P, Zuo M. J. Ind. Eng. Chem., 2017, 46:315.
[73] Abdel N M, Salem M A, Ahmed M F, Shahat E. J. Mol. Liq., 2016, 219:780.
[74] Liu J, Zhao Z W, Shao P H, Cui F Y. J. Chem. Eng., 2015, 262:854.
[75] Yang Q, Song H, Li Y, Pan Z, Dong M, Chen F, Chen Z. J. Mol. Liq., 2017, 234:18.
[76] Chang J L, Ma J C, Ma Q L, Zhang D D, Qiao N N, Hu M X, Ma H Z. Appl. Clay. Sci., 2016, 119:132.
[77] Zhu H Y, Jiang R, Li J B, Fu Y Q, Jiang S T, Yao J. Sep. Technol., 2017, 179:184.
[78] Zhang Z, Kong J. J. Hazard. Mater., 2011,193:325.
[79] Yang N, Zhu S, Zhang D, Xu S. Mater. Lett. 2008, 62:645.
[80] Kalantari M, Yu M, Noonan O, Song H, Xu H, Huang X, Xiang F, Wang X, Yu C. Chemosphere, 2017, 166:109.
[81] Madrakian T, Afkhami A, Ahmadi M, Bagheri H. J. Hazard. Mater., 2011, 196:109.
[82] Chong S, Zhang G M, Tian H F, Zhao H. J. Environ. Sci., 2016, 44:148.
[83] Geng Z, Lin Y, Yu X, Shen Q, Ma L, Li Z, Pan N, Wang X. J. Mater. Chem., 2012, 22:3527.
[84] 张立德(Zhang L D), 牟季美(Mou J M). 纳米材料和纳米结构(Textbook of Nanomaterials and Nanostructures). 北京:科学出版社(Beijing:Science Press), 2001, 503.
[85] Niu H L, Lu J H, Song J J, Pan L, Zhang X W, Wang L, Zou J. J. Ind. Eng. Chem. Res., 2016, 55:8527.
[86] 牛文君(Niu W J), 沈亚乐(Shen Y L), 许静(Xu J), 马柳磊(Ma L L), 赵玉华(Zhao Y H), 沈明(Shen M). 无机化学学报(Chin. J. Inorg. Chem.), 2013, 29:2110.
[87] 刘淑玲(Liu S L), 许青青(Xu Q Q). 陕西科技大学学报(J. Shanxi Univ.), 2015, 2:103.
[88] Boruah P K, Sharma B, Karbhal I, Shelke M V, Das M R. J. Hazard. Mater., 2017, 325:90.
[89] Zhou L C, Shao Y M, Liu J R, Ye Z F, Zhang H, Ma J J, Jia Y, Gao W J, Li Y F. ACS Appl. Mater. Interfaces, 2014, 6:7275.
[90] Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Nature Nanotechnol., 2007, 2:577.
[91] Liu S, Lu F, Xing R, Zhu J J. Chem. Eur. J., 2011, 17:620.
[92] Yu C, Lin C, Liu C, Cheng T, Tseng W. Biosens. Bioelectron., 2010, 26(2):913.
[93] Tseng W, Liu C. Anal. Chim. Acta, 2011, 703(1):87.
[94] Sharma P K, Dutta S, Sharma S, Zboril R, Varma R S, Gawande M B. Green Chem., 2016, 18:3184.
[95] Karami B, Hoseini S J, Eskandari K, Ghasemi A, Nasrabadi H. Catal. Sci. Technol., 2012, 2:331.
[96] Zhang Z H, Lu H Y, Yang S H, Gao J W. J. Comb. Chem., 2010, 12:643.
[97] Pagoti S, Surana S, Chauhan A, Parasar B, Dash J. Catal. Sci. Technol., 2013, 3:584.
[98] Schwartzberg A M, Grant C D, Wolcott A, Talley C E, Huser T R, Bogomolni R, Zhang J Z. Phys. Chem. B, 2004, 108:19191.
[99] Kuo C W, Lai J J, Wei K H, Chen P. Adv. Funct. Mater., 2007, 17:3707.
[100] Tsunoyama H, Sakurai H, Ichikuni N, Negishi Y, Tsukuda T. Langmuir, 2004, 20:11293.
[101] Morkel M, Rupprechter G, Freund H J. J. Chem. Phys., 2003, 119:10853.
[102] Astruc D, Lu F, Aranzaes J R. Angew. Chem. Int. Ed., 2005, 44:7852.
[103] Sun Z, Zhou X, Luo W, Yue Q, Zhang Y, Cheng X, Li W, Kong B, Deng Y, Zhao D. Nano Today, 2016, 11:464.
[104] Yue Q, Zhang Y, Wang C, Wang X, Sun Z, Hou X F, Zhao D, Deng Y. J. Mater. Chem. A, 2015, 3:4586.
[105] Xia Q D, Fu S S, Ren G J, Chai F, Jiang J J, Qu F Y. New J. Chem., 2016, 40:818.
[106] Wang C, Daimon H, Sun S H. Nano Letters, 2009, 9:1493.
[107] Thokchom B, Qiu P P, Cui M C, Park B, Pandit A B, Khim J. Ultrason. Sonochem., 2017, 34:262.
[108] Byun S, Song Y, Song B M. ACS Appl. Mater. Interfaces, 2016, 8:14637.
[109] Guin D, Baruwati B, Manorama S V. Org. Lett., 2007, 9:1419.
[110] Parandhaman T, Pentela N, Ramalingam B, Samanta D, Sujoy K. Sustain. Chem. Eng., 2017, 5:489.
[111] Kumar B S, Amali A J, Pitchumani K. ACS Appl. Mater. Interfaces, 2015, 7:22907.
[112] Zhu M Y, Wang C J, Meng D H, Diao G W. J. Mater. Chem. A, 2013, 1:2118.
[113] Zhu M, Diao G. J. Phys. Chem. C, 2011, 115:24743.
[114] Zhang P, Li R, Huang Y M, Chen Q W. ACS Appl. Mater. Interfaces, 2014, 6:2671.
[115] Zhou L, Gao C, Xu W J. Langmuir, 2010, 26:11217.
[116] Panella B, Vargas A, Baiker A. J. Catal., 2009, 261:88.
[117] Hu H B, Wang Z H, Pan L, Zhao S P, Zhu S Y. Phys. Chem. C, 2010, 114:7738.
[118] Zhu Y, Shen J, Zhou K, Chen C, Yang X, Li C. Phys. Chem. C, 2011, 115:1614.
[119] Ge J, Zhang Q, Zhang T, Yin Y. Angew. Chem., 2008, 120:9056.
[120] Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D. J. Am. Chem. Soc., 2010, 132, 8466.
[121] Xie Y J, Yan B, Xu H L, Chen J, Liu Q X, Deng Y H, Zeng H B. ACS Appl. Mater. Interfaces, 2014, 6:8845.
[122] Liu R, Guo Y L, Odusote G, Qu F L, Priestley R D. ACS Appl. Mater. Interfaces, 2013, 5:9167.
[123] Xuan S H, Wang Y J, Yu J C, Lueng K C. Langmuir, 2009, 25:11835.
[124] 陈金媛(Chen J Y), 彭图治(Peng T Z). 化学学报(Acta. Chim. Sinica), 2004, 62:2093.
[125] Shen C H, Lo S L, Chang C Y. Adv. Mater. Res., 2009, 79:321.
[126] Choi K H, Park S Y, Park B J, Jung J S. Surf. Coat. Technol., 2017, 01:029.
[127] 任学昌(Ren X C), 马学琴(Ma X Q), 任晓亮(Ren X L), 王拯(Wang Z), 刘鹏宇(Liu Peng Y), 常青(Chang Q). 环境化学(Environ. Chem.), 2013, 11:2149.
[128] Wang J, Yang J H, Li X Y, Wang D D, Wei B, Song H, Li X F, Fu S W. Physica E, 2016, 75:66.
[129] Chidambaram S, Pari B, Kasi N, Muthusamy S. J. Alloys Compd., 2016, 665:404.
[130] Zhang S W, Fan Q H, Gao H H, Huang Y S, Liu X, Li J X, Xu X J, Wang X K. J. Mater. Chem. A, 2016, 4:1414.
[131] Zhang F, Chen M Z, Wu X T, Wang W, Li H X. J. Mater. Chem. A, 2014, 2:484.
[132] Li Q Y, Jiang S, Ji S F, Shi D, Yan J L, Huo Y X, Zhang Q M. Ind. Eng. Chem. Res., 2014, 53:14948.
[133] Hu A, Yee G T, Lin W. J. Am. Chem. Soc., 2005, 127:12486.
[134] Sadeghi O, Amini M M, Bazargani M F B, Mehrani A, Aghabali A, Adineh M, Amani V, Mehrani K. J. Inorg Organomet. Polym., 2012, 22:530.
[135] Lin T R, Wang J, Guo L Q, Fu F F. J. Phys. Chem. C, 2015, 119:13658.
[136] Li G P, Mao L Q. Adv., 2012, 2:5108.
[137] Zhu Y G, Kaskel S, Shi J, Wage T, Pée K H V. Chem. Mater., 2007, 19:6408.
[138] Poizot P, Laruelle S, Grugeon S. Nature, 2000, 407:496.
[139] Taberna P L, Mitra S, Poizot P, Simon P, Tarascon J M. Nat. Mater., 2006, 5:567.
[140] 王新慧(Wang X H). 山西师范大学硕士论文(Master Dissertation of Shanxi Normal University), 2014.
[141] Bruce P G, Scrosati B, Tarascon J M. Angew. Chem. Int. Edit., 2008, 47:2930.
[142] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nature, 2000, 6803:496.
[143] Xie W H, Gu L L, Sun X L, Liu M T, Li S Y, Wang Q, Liu D Q, He D Y. Electrochim. Acta. 2016, 220:107.
[144] Wang L, Zhang X X, Wang S S, Li Y H, Qian B, Jiang X F, Yang G. Powder Technol., 2014, 256:499.
[145] Zeng X J, Yang B, Li X P, Li R F, Yu R H. Mater. Design, 2016, 101:35.
[146] Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Zhang P, Shao C, Liang W. Nanoscale, 2011, 3:5034.
[147] Liu S, Guo S, Sun S, You X Z. Nanoscale, 2015, 7:4890.
[148] Yang X, Kan J, Zhang F, Zhu M, Li S. J. Inorg. Organomet. Polym., 2017, 27:542.
[149] 王小芳(Wang X F), 王惠(Wang H), 田勇(Tian Y), 董发昕(Dong F X), 史启祯(Shi Q Z), 文振翼(Wen Z Y). 化学学报(Acta Chemica Sinica), 2007, 65:601.
[150] Zhao X, Zhao H, Chen Z, Lan M. J. Nanosci. Nanotechnol., 2014, 14:210.
[151] Sanjai C, Kothan S, Gonil P, Saesoo S, Sajomsang W. Carbohyd. Polym., 2014, 104:231.
[152] Yuan Y, Ding Z, Qian J, Zhang J, Xu J, Dong X, Han T, Ge S, Luo Y, Wang Y, Zhong K, Liang G. Nano Lett., 2016, 16(4):2686.
[153] 王佩(Wang P), 李玉珍(Li Y Z). 中国新药杂志(Chin. J. New Drug), 1996, 5:180.
[154] 杨晓春(Yang X C), 张强(Zhang Q), 吴霖(Wu L). 中国药学杂志(Chin. J. New Drug), 2001, 36:795.
[155] 马喜峰(Ma X F), 郭红(Guo H), 李斌(Li B). 精细与专用化学品(Fine and Specially Chemistry), 2014, 22:13.
[156] Wang Z F, Guo H S, Yu Y L. J. Magn. Mater., 2006, 302:397.
[157] Zhu X, Yuan J, Leung K C, Lee S F, Sham K W Y, Cheng C H K, Au D W T, Teng G J, Ahuja A T, Wang Y X J. Nanoscale, 2012, 4:5744.
[158] Yang C Y, Guo W, Cui L R, An N, Zhang T, Lin H M, Qu F Y. Langmuir, 2014, 30:9819.
[159] 张杰(Zhang J), 杨静(Yang J), 甄卫军(Zhen W J). 精细石油化工进展(Adv. Fine Petrochem.), 2012, 13:51.
[160] 马喜峰(Ma X F),汤春妮(Tang C N), 李斌(Li B). 化学与生物工程(Chem. Bioeng.), 2014, 31:35.
[161] 许丽君(Xu L J). 化学教育(Chin. J. Chem. Edu.), 2015, 36:33.
[162] 杨剑冰(Yang J B). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2015.
[163] Cao S L, Xu P, Ma Y Z, Yao X X, Yao Y, Zong M H, Li X H, Lou W Y. Chin. J. Catal., 2016, 37:1814.
[164] Yue Q, Li J, Luo W, Zhang Y, Elzatahry A A, Wang X, Wang C, Li W, Cheng X, Alghamdi A, Abdullah A M, Deng Y, Zhao D. J. Am. Chem. Soc., 2015, 137:13282.
[165] Yue Q, Zhang Y, Jiang Y, Li J, Zhang H, Yu C, Elzatahry A, Alghamdi A, Deng Y, Zhao D. J. Am. Chem. Soc., 2017, 139:4954.
[166] Fernandez S C, Costa G A. Analytica Chimica Acta, 1999, 402:119.
[167] Liu Z M, Yang H F, Li Y F, Liu Y L, Shen J L, Yu R Q. Sens. Actuators, B-Chem., 2006, 113:956.
[168] Weidenfeller B, Hmer M, Schilling F. Composites:Part A, 2002, 33:1041.
[169] Stoyanov P, Gottschalk A, Lind D M. J. Appl. Phys., 1997, 81:5010.
[170] Khollam Y B, Dhage S R, Potdar H S, Deshpande S B, Bakare P P, Kulkarni S D, Date S K. Mater. Lett., 2002, 56:571.
[1] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[2] 刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展, 2021, 33(11): 2128-2137.
[3] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[4] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[5] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[6] 乔颖, 腾娜, 翟承凯, 那海宁, 朱锦. 化学法催化纤维素高效水解成糖[J]. 化学进展, 2018, 30(9): 1415-1423.
[7] 李红, 赵媛媛, 彭浩南. 多巴胺基纳米材料在生物医药中的应用[J]. 化学进展, 2018, 30(8): 1228-1241.
[8] 刘天辉, 常刚, 曹瑞军, 孟令杰. 超顺磁性Fe3O4纳米粒子在磁共振造影中的应用[J]. 化学进展, 2015, 27(5): 601-613.
[9] 周贵凤, 王勤, 曾仁权, 傅相锴, 杨新斌. 磷酸锆及其衍生物的制备与应用[J]. 化学进展, 2014, 26(01): 87-99.
[10] 谭丽莎, 孙明洋, 胡运俊, 程丽华, 徐新华. 功能化纳米Fe3O4磁性材料的制备及其对水中重金属离子的去除[J]. 化学进展, 2013, 25(12): 2147-2158.
[11] 万鹏博, Hill Eric H., 张希. 界面超分子化学与响应性功能表面[J]. 化学进展, 2012, 24(01): 1-7.
[12] 刘湘, 潘争光, 许建和. 手性芳基邻二醇的不对称合成[J]. 化学进展, 2011, 23(5): 903-913.
[13] 孙绍晖 孙培勤 马国杰 衡明星 陈俊武. 单糖化学催化制取运输燃料[J]. 化学进展, 2010, 22(09): 1844-1851.
[14] 季俊红 季生福 杨伟 李成岳. 磁性Fe3O4纳米晶制备及应用[J]. 化学进展, 2010, 22(08): 1566-1574.
[15] 于文广,张同来,张建国,郭金玉,吴瑞凤. 纳米四氧化三铁(Fe3O4)的制备和形貌*[J]. 化学进展, 2007, 19(06): 884-892.