English
新闻公告
More
化学进展 2017, Vol. 29 Issue (11): 1351-1356 DOI: 10.7536/PC170557 前一篇   后一篇

• 综述 •

邻氨基苯甲酰胺类化合物的合成

张晓鹏*, 董淑祥, 范学森, 张贵生   

  1. 河南师范大学化学化工学院 绿色化学介质与反应教育部重点实验室 河南省有机功能分子与药物创新重点实验室 精细化学品绿色制造河南省协同创新中心 新乡 453007
  • 收稿日期:2017-05-27 修回日期:2017-09-02 出版日期:2017-11-15 发布日期:2017-10-27
  • 通讯作者: 张晓鹏,e-mail:zhangxiaopengv@sina.com E-mail:zhangxiaopengv@sina.com
  • 基金资助:
    国家自然科学基金项目(No.21772033)资助

Synthesis of o-Aminobenzamide Compounds

Xiaopeng Zhang*, Shuxiang Dong, Xuesen Fan, Guisheng Zhang   

  1. Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received:2017-05-27 Revised:2017-09-02 Online:2017-11-15 Published:2017-10-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21772033).
邻氨基苯甲酰胺类化合物是一类分子内含有双官能团的化合物。其分子中的酰胺键既是肽和蛋白质的基本组成单元,也是调节生命活动不可缺少的结构单元;而其分子中的酰胺基和氨基,则具有良好的反应活性,故该类化合物大多具有生物及药理活性,在医药、农药、有机合成等领域具有广泛的应用。本文总结了邻氨基苯甲酰胺类化合物的合成研究进展,主要介绍了分别以邻氨基苯甲酸、邻氨基苯甲酰卤、邻氨基苯甲酸酯、靛红酸酐、邻卤苯甲酸及其衍生物、喹唑啉酮、苯甲酰胺、苯炔、吲唑盐、N-取代苯胺等为原料的邻氨基苯甲酰胺类化合物合成方法的研究进展概况,并分析了各方法的利弊。最后对该类化合物的合成情况进行了总结并对其发展前景进行了展望。
o-Aminobenzamide compounds are a class of molecules containing bifunctional groups. The amide bonds in their molecules are not only the basic constituent units of peptides and proteins, but also the structural units which are indispensable to regulate the life activity. The amide and amino groups in the molecules have good reactivities, so most of the compounds have biological and pharmacological activities in medicine, pesticides, organic synthesis and other fields with a wide range of applications. In this paper, the progress of the synthesis of o-aminobenzamide compounds is reviewed. The main approaches to o-aminobenzamide compounds are introduced with o-aminobenzoic acids, o-aminobenzoyl halides, o-aminobenzoates, isatoic anhydrides, o-halobenzoic acid and their derivatives, quinazolinones, benzamides, benzynes, indazole salts, N-substituted anilines as raw materials, respectively, and the advantages and disadvantages of each method are analyzed. Finally, the synthesis of these compounds is summarized and the prospect of their development is prospected.
Contents
1 Introduction
2 Synthesis of o-aminobenzamide compounds
2.1 From o-aminobenzoic acids
2.2 From o-aminobenzoyl halides
2.3 From o-aminobenzoates
2.4 From isatoic anhydrides
2.5 From o-halobenzoic acids and their derivatives
2.6 From quinazolinones
2.7 From benzamides
2.8 From benzynes
2.9 From indazole salts
2.10 From N-substituted anilines
3 Conclusion

中图分类号: 

()
[1] Gurulingappa H, Amador M L, Zhao M, Rudek M A, Hidalgo M, Khan S R. Bioorg. Med. Chem., 2004, 14(9):2213.
[2] Labrie P, Maddaford S P, Fortin S, Rakhit S, Kotra L P, Gaudreault R C. J. Med. Chem., 2006, 49(26):7646.
[3] Ott G R, Cheng M, Learn K S, Wagner J, Gingrich D E, Lisko J G. J. Med. Chem., 2016, 59(16):7478.
[4] Shoji N, Umeyama A, Iuchi A, Saito N, Takemoto T, Nomoto K, Ohizumi Y. J. Nat. Prod., 1988, 51(4):791.
[5] Kukar T, Murphy M P, Eriksen J L, Sagi S A, Weggen S, Smith T E, Ladd T, Khan M A, Kache R, Beard J, Dodson M, Merit S, Ozols V V, Anastasiadis P Z, Das P, Fauq A, Koo E H, Golde T E. Nat. Med., 2005, 11(5):545.
[6] Narsinghani T, Chaturvedi S C. Bioorg. Med. Chem. Lett., 2006, 16(2):461.
[7] Englund E E, Neumann S, Eliseeva E, McCoy J G, Titus S, Zheng W, Southall N, Shin P, Thomas C J, Inglese J, Austin C P, Gershengorn M C, Huang W M. MedChemComm, 2011, 2(10):1016.
[8] Joubert J, van Dyk S, Green I R, Malan S F. Bioorg. Med. Chem., 2011, 19(13):3935.
[9] van Straten N C R, Schoonus Gerritsma G G, van Someren R G, Draaijer J, Adang A E P, Timmers C M, Hanssen R G J M, van Boeckel C A A. ChemBioChem, 2002, 3(10):1023.
[10] Verma A, Giridhar R, Kanhed A, Sinha A, Modh P, Yadav M R. ACS Med. Chem. Lett., 2015, 6(2):226.
[11] Roy K, De A U, Sengupta C. Drug Des. Discovery, 2002, 18(1):23.
[12] Zhang X L, Liu A L, Zhao Y, Xiong L X, Li Z M. Chem. Res. Chin. Univ., 2013, 29(6):1134.
[13] Xu Z H, Zhang Y P, Fu H C, Zhong H M, Hong K, Zhu W M. Bioorg. Med. Chem. Lett., 2011, 21(13):4005.
[14] Bilokin Y V, Kovalenko S M. Heterocycl. Commun., 2000, 6(5):409.
[15] Tian X H, Song L N, Li E T, Wang Q, Yu W Q, Chang J B. RSC Adv., 2015, 5(76):62194.
[16] Miyata T, Mizuno T, Nagahama Y, Nishiguchi I, Hirashima T, Sonoda N. Heteroat. Chem., 1991, 2(4):473.
[17] Kokten S, Celik I. Synthesis, 2013, 45(18):2551.
[18] Li L C, Ren J, Liao T G, Jiang J X, Zhu H J. Eur. J. Org. Chem., 2007, 2007(6):1026.
[19] Rai A, Yadav L D S. Eur. J. Org. Chem., 2013, 2013(10):1889.
[20] Munegumi T, Kimura E, Sodeyama A, Sakurai A. Asian J. Chem., 2008, 20(4):3079.
[21] Campbell J A, McDougald G, McNab H, Rees L V C, Tyas R G. Synthesis, 2007, 20:3179.
[22] Fernandez Forner D, Eritja R, Bardella F, Ruiz Perez C, Solans X, Giralt E, Pedroso E. Tetrahedron, 1991, 47(42):8917.
[23] Ferrand G, Dumas H, Depin J C, Chavernac G. Eur. J. Med. Chem., 1987, 22(4):337.
[24] Wang Z W, Wang M X, Yao X, Li Y, Tan J, Wang L Z, Qiao W T, Geng Y Q, Liu Y X, Wang Q M. Eur. J. Med. Chem., 2012, 53:275.
[25] Ozaki K, Yamada Y, Oine T. J. Org. Chem., 1981, 46(8):1571.
[26] Yee Y K, Tebbe A L, Linebarger J H, Beight D W, Craft T J, Giffordmoore D S, Goodson T, Herron D K, Klimkowski V J, Kyle J A. J. Med. Chem., 2000, 43(5):873.
[27] Xia Z M, Wang K, Zheng J N, Ma Z Y, Jiang Z G, Wang X X, Lv X. Org. Biomol. Chem., 2012, 10(8):1602.
[28] Humphrey J M, Chamberlin A R. Chem. Rev., 1997, 28(52):2243.
[29] Sheehan J C, Hess G P. J. Am. Chem. Soc., 1955, 77(4):1067.
[30] Castro B, Dormoy J R, Evin G, Selve C. Tetrahedron Lett., 1975, 16(14):1219.
[31] Carpino L A. J. Am. Chem. Soc., 1993, 115(10):4397.
[32] Peet N P, Sunder S, Barbuch R J. J. Heterocycl. Chem., 1980, 17:1513.
[33] Rice K D, Aay N, Anand N K, Blazey C M, Bowles O J, Bussenius J, Costanzo S, Curtis J K, Defina S C, Dubenko L, Engst S, Joshi A A, Kennedy A R, Kim A I, Koltun E S, Lougheed J C, Manalo J C L, Martini J F, Nuss J M, Peto C J, Tsang T H, Yu P W, Johnston S. ACS Med. Chem. Lett., 2012, 3(5):416.
[34] Mahiwal K, Kumar P, Narasimhan B. Med. Chem. Res., 2012, 21(3):293.
[35] Correa A, Tellitu I, Dominguez E, Sanmartin R. J. Org. Chem., 2006, 71(9):3501.
[36] Coppola G M M, Ruth I. J. Heterocycl. Chem., 1978, 15(7):1169.
[37] Sawatzky E, Wehle S, Kling B, Wendrich J, Bringmann G, Sotriffer C A, Heilmann J, Decker M. J. Med. Chem., 2016, 59(5):2067.
[38] Clark P G, Lein M, Keyzers R A. Org. Biomol. Chem., 2012, 10(9):1725.
[39] Jourdan F. Eur. J. Inorg. Chem., 1885, 18(1):1444.
[40] Ullmann F. Eur. J. Inorg. Chem., 1903, 36(2):2382.
[41] Goldberg I. Eur. J. Inorg. Chem., 1906, 39(2):1691.
[42] Guram A S, Buchwald S L. J. Am. Chem. Soc., 1994, 116(17):7901.
[43] Paul F, Patt J, Hartwig J F. J. Am. Chem. Soc., 1994, 116(13):5969.
[44] 王晔峰(Wang Y F), 曾京辉(Zeng J H), 崔晓瑞(Cui X R). 有机化学(Chinese Journal of Organic Chemistry), 2010, 30(2):181.
[45] Culf A S, Cuperlovic Culf M, Ouellette R J, Decken A. Org. Lett., 2015, 17(11):2744.
[46] Pakrashi S C, Chakravarty A K. J. Org. Chem., 1972, 37(20):3143.
[47] Lee D, Kim Y, Chang S. J. Org. Chem., 2013, 78(21):11102.
[48] Zhang T, Hu X J, Wang Z, Yang T T, Sun H, Li G G, Lu H J. Chem. Eur. J., 2016, 22(9):2920.
[49] Ryu J, Shin K, Park S H, Kim J Y, Chang S. Angew. Chem. Int. Ed., 2012, 51(39):9904.
[50] Shin K, Baek Y, Chang S. Angew. Chem. Int. Ed., 2013, 52(31):8031.
[51] Figg T M, Park S, Park J, Chang S, Musaev D G. Organometallics, 2014, 33(15):4076.
[52] Kim H, Shin K, Chang S. J. Am. Chem. Soc., 2014, 136(16):5904.
[53] Kim H, Chang S. ACS Catal., 2015, 5(11):6665.
[54] Tran N T T, Tran Q H, Truong T. J. Catal., 2014, 320:9.
[55] Yan Q Q, Chen Z K, Yu W L, Yin H, Liu Z X, Zhang Y H. Org. Lett., 2015, 17(10):2482.
[56] Zhang L B, Zhang S K, Wei D, Zhu X, Hao X Q, Su J H, Niu J L, Song M P. Org. Lett., 2016, 18(6):1318.
[57] Shang M, Sun S Z, Dai H X, Yu J Q. J. Am. Chem. Soc., 2014, 136(9):3354.
[58] Tezuka N, Shimojo K, Hirano K, Komagawa S, Yoshida K, Wang C, Miyamoto K, Saito T, Takita R, Uchiyama M. J. Am. Chem. Soc., 2016, 138(29):9166.
[59] Yoshida H, Shirakawa E, Honda Y, Hiyama T. Angew. Chem. Int. Ed., 2002, 41(17):3247.
[60] Li R, Tang H R, Fu H X, Ren H L, Wang X M, Wu C R, Wu C, Shi F. J. Org. Chem., 2014, 79(3):1344.
[61] Guan Z, Nieger M, Schmidt A. Eur. J. Org. Chem., 2015, 2015(21):4710.
[62] Katritzky A R, Fan W Q, Akutagawa K. Tetrahedron, 1986, 42(14):4027.
[63] Zhang X P, Dong S X, Niu X L, Li Z W, Fan X S, Zhang G S. Org. Lett., 2016, 18(18):4634.
[1] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[2] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[3] 金小平, 张莉, 高浩其, 房江华, 李瑞丰, 方烨汶. 钯和铜催化的脂肪醇和芳基卤代烃偶联反应[J]. 化学进展, 2013, 25(11): 1898-1905.
[4] 张变香*, 赵晓芸, 吴群, 郭一力. 芳基碘鎓盐促进芳基化反应的应用[J]. 化学进展, 2013, 25(07): 1142-1148.
[5] 沈金海, 程国林, 崔秀灵*. 基于钯催化C-H键活化的多米诺反应[J]. 化学进展, 2012, 24(07): 1324-1336.
[6] 王丽丽 赵伟宁 段征. K4[Fe(CN)6]作为氰源在氰基化反应中的应用**[J]. 化学进展, 2010, 22(10): 1964-1972.
[7] 李湖 施章杰. 基于钯催化的C—H选择性官能团化构建C—C键*[J]. 化学进展, 2010, 22(07): 1414-1433.
[8] 刘振德,何煦昌. 手性二茂铁类配体在钯催化不对称反应中的应用*[J]. 化学进展, 2006, 18(11): 1489-1497.
[9] 龚军芳,徐晨,吴养洁. 过渡金属催化的羰基化合物及含酸性氢化合物的α-芳基化反应*[J]. 化学进展, 2006, 18(06): 752-760.
阅读次数
全文


摘要

邻氨基苯甲酰胺类化合物的合成