English
新闻公告
More
化学进展 2017, Vol. 29 Issue (10): 1159-1172 DOI: 10.7536/PC170542 前一篇   后一篇

• 综述 •

编码微载体的制备及其生物医学应用

王欢1, 商珞然1,2, 顾笑晓1, 戎非1,3, 赵远锦1*   

  1. 1. 东南大学生物电子学国家重点实验室 南京 210018;
    2. 哈佛大学工程与应用科学学院 坎布里奇 02138;
    3. 东南大学苏州研究院 苏州市环境与生物安全重点实验室 苏州 215123
  • 收稿日期:2017-05-18 修回日期:2017-08-05 出版日期:2017-10-15 发布日期:2017-08-29
  • 通讯作者: 赵远锦,e-mail:yjzhao@seu.edu.cn E-mail:yjzhao@seu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21473029,51522302),NSAF基金项目(No.U1530260)和东南大学优秀博士学位论文培育基金资助

The Preparation and Biomedical Applications of Encoded Microcarriers

Huan Wang1, Luoran Shang1,2, Xiaoxiao Gu1, Fei Rong1,3, Yuanjin Zhao1*   

  1. 1. State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, China;
    2. School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, United States;
    3. Suzhou Key Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou 215123, China
  • Received:2017-05-18 Revised:2017-08-05 Online:2017-10-15 Published:2017-08-29
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21473029,51522302),the NSAF Foundation of China (No. U1530260),and the Scientific Research Foundation of Graduate School of Southeast University.
高通量分析技术在生物检测、药物递送、材料评估和防伪等方面有着重要的应用,这些应用通常依赖于多元分析来实现。编码微载体技术为多元分析提供了一个可行的策略。编码微载体通过赋予不同微载体不同编码信息来实现编码,编码方式通常为图形编码、光学编码等的一种或多种,并通过每个微载体编码信息的不同来实现对生物分子、细胞和材料的区分和检测。本文总结了编码微载体领域的研究进展,介绍了微载体常用的编码策略,并重点阐述了基于编码微载体的分析技术在多元检测、细胞培养与捕获、药物评估、药物递送和防伪等领域的应用。最后,我们总结了编码微载体的优缺点,并对其发展前景进行了展望。
High-throughput assays plays an important role in many fields, such as bioassays, drug delivery, materials evaluation, anti-counterfeiting, etc. Multiple assays is a kind of reliable method to realize these applications. One promising strategy for multiple assays is encoded microcarriers. Encoded microcarriers are microcarriers encoded by different encoding information, and the encoding information are generally one or a combination of several strategies such as shape and optical encoding. As the encoding information of each microcarrier is unique, the microcarriers could be used to distinguish biomolecules, cells and materials, and to realize multiple detection. In this review, the progress in encoded microcarriers are summarized, and the encoding strategies of the microcarriers are introduced. Their applications in multiple detection, cell culture and capture, drug evaluation, drug delivery and anti-counterfeiting are described in detail. Finally, the strengths and shortcomings, as well as the future development of the encoded microcarriers are discussed.
Contents
1 Introduction
2 Encoding strategies of microcarriers
2.1 Graphics encoding
2.2 Optical encoding
2.3 Others
3 Applications
3.1 Label multiplex bioassays
3.2 Label-free multiplex bioassays
3.3 Cell culture and capture
3.4 Drug evaluation
3.5 Drug delivery
3.6 Anti-counterfeiting
4 Conclusion and outlook

中图分类号: 

()
[1] Hu X B, Huang J, Zhang W X, Li M H, Tao C G, Li G T. Adv. Mater., 2008, 20:4074.
[2] Hu J J, Liu F, Ju H X. Angew. Chem. Int. Ed., 2016, 55:6667.
[3] Zhao Y J, Cheng Y, Shang L R, Wang J, Xie Z Y, Gu Z Z. Small, 2015, 11:151.
[4] Huang Y, Li F Y, Qin M, Jiang L, Song Y L. Angew. Chem. Int. Ed., 2013, 52:7296.
[5] Zhao Y J, Shang L R, Cheng Y, Gu Z Z. Acc. Chem. Res., 2014, 47:3632.
[6] Lin S, Wang W, Ju X J, Xie R, Liu Z, Yu H R, Zhang C, Chu L Y. Proc. Natl. Acad. Sci. U.S.A., 2016, 113:2023.
[7] Zhao Y J, Xie Z Y, Gu H C, Zhu C, Gu Z Z. Chem. Soc. Rev., 2012, 41:3297.
[8] 桂珍(Gui Z), 严枫(Yan F), 李金昌(Li J C),葛梦圆(Ge M Y), 鞠熀先(Ju H X). 化学进展(Progress in Chemistry), 2015, 27(10):1448.
[9] He L, Wang M S, Ge J P, Yin Y D. Acc. Chem. Res., 2012, 45:1431.
[10] Zhao Y J, Shum H C, Chen H S, Adams L L A, Gu Z Z, Weitz D A. J. Am. Chem. Soc., 2011, 133:8790.
[11] Huang Y, Li F Y, Ye C Q, Qin M, Ran W, Song Y L. Sci Rep., 2015, 5:9724.
[12] Leng Y K, Sun K, Chen X Y, Li W W. Chem. Soc. Rev., 2015, 44:5552.
[13] Hu D H, Han H Y, Zhou R, Dong F, Bei W C, Jia F, Chen H C. Analyst, 2008, 133:768.
[14] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Nat. Mater., 2008, 7:442.
[15] Ge J P, Yin Y D. Angew. Chem. Int. Ed., 2011, 50:1492.
[16] 王欢(Wang H), 商珞然(Shang L R), 戎非(Rong F), 顾忠泽(Gu Z Z), 赵远锦(Zhao Y J). 化学通报(Chemistry Bulletin), 2017, 80(3):219.
[17] Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4:435.
[18] Braeckmans K, De Smedt S C, Leblans M, Pauwels R, Demeester J. Nat. Rev. Drug. Discov., 2002, 1:447.
[19] Vignali D A A. J. Immunol. Methods, 2000, 243:243.
[20] Cederquist K B, Dean S L, Keating C D. Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol., 2010, 2:578.
[21] Kim J J, Bong K W, Reátegui E, Irimia D, Doyle P S. Nat. Mater., 2017, 16:139.
[22] Wilson R, Cossins A R, Spiller D G. Angew. Chem. Int. Ed., 2006, 45:6104.
[23] Vaino A R, Janda K D. Proc. Natl. Acad. Sci. U.S.A., 2000, 97:7692.
[24] Nicewarner-Peña S R, Freeman R G, Reiss B D, He L, Peña D J, Walton I D, Cromer R, Keating C D, Natan M J. Science, 2001, 294:137.
[25] Matthias S, Schilling J, Nielsch K, Müller F, Wehrspohn R B, Gösele U. Adv. Mater., 2002, 14:1618.
[26] Dejneka M J, Streltsov A, Pal S, Frutos A G, Powell C L, Yost K, Yuen P K, Müller U, Lahiri J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:389.
[27] Braeckmans K, De Smedt S C, Roelant C, Leblans M, Pauwels R, Demeester J. Nat. Mater., 2003, 2:169.
[28] Xiao X Y, Zhao C F, Potash H, Nova M P. Angew. Chem. Int. Ed., 1997, 36:780.
[29] Pregibon D C, Toner M, Doyle P S. Science, 2007, 315:1393.
[30] Lee H, Kim J, Kim H, Kim J, Kwon S. Nat. Mater., 2010, 9:745.
[31] Battersby B J, Bryant D, Meutermans W, Matthews D, Smythe M L, Trau M. J. Am. Chem. Soc., 2000, 122:2138.
[32] Grøndahl L, Battersby B J, Bryant D, Trau M J. Langmuir, 2000, 16:9709.
[33] Trau M, Battersby B J. Adv. Mater., 2001, 13:975.
[34] Li Y G, Cu Y T H, Luo D. Nat. Biotechnol., 2005, 23:885.
[35] Geiss G K, Bumgarner R E, Birditt B, Dahl T, Dowidar N, Dunaway D L, Fell H P, Ferree S, George R D, Grogan T, James J J, Maysuria M, Mitton J D, Oliveri P, Osborn J L, Peng T, Ratcliffe A L, Webster P J, Davidson E H, Hood L, Dimitrov K. Nat. Biotechnol., 2008, 26:317.
[36] https://www.illumina.com/technology/beadarray-technology.html.
[37] Gunderson K L, Kruglyak S, Graige M S, Garcia F, Kermani B G, Zhao C F, Che D P, Dickinson T, Wickham E, Bierle J, Doucet D, Milewski M, Yang R, Siegmund C, Haas J, Zhou L X, Oliphant A, Fan J B, Barnard S, Chee M S. Genome Res., 2004, 14:870.
[38] 赵冬梅(Zhao D M), 孙立国(Sun L G), 王彦杰(Wang H J), 杜宇虹(Du Y H), 汪成(Wang C). 化学进展(Progress in Chemistry), 2012, 24:1277.
[39] Chan W C W, Maxwell D J, Gao X H, Bailey R E, Han M Y, Nie S M. Curr. Opin. Biotechnol., 2002, 13:40.
[40] Han M Y, Gao X H, Su J Z, Nie S M. Nat. Biotechnol., 2001, 19:631.
[41] Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. Nat. Biotechnol., 2004, 22:969.
[42] 赵兵(Zhao B), 祁宁(Qi N), 张克勤(Zhang K Q). 化学进展(Progress in Chemistry), 2016, 28:1615.
[43] 王瑜(Wang Y), 任舒悦(Ren S Y), 姜会聪(Jiang H C), 白家磊(Bai J L), 彭媛(Peng Y), 宁保安(Ning B A), 高志贤(Gao Z X). 分析化学(Chinese Journal of Analytical Chemistry), 2017, 45:35.
[44] Zhang F, Shi Q H, Zhang Y C, Shi Y F, Ding K L, Zhao D Y, Stucky G D. Adv. Mater., 2011, 23:3775.
[45] Zhang Y H, Zhang L X, Deng R R, Tian J, Zong Y, Jin D Y, Liu X G. J. Am. Chem. Soc., 2014, 136:4893.
[46] Page R H, Schaffers K I, Waide P A, Tassano J B, Payne S A, Krupke W F, Bischel W K. J. Opt. Soc. Am. B, 1998, 15:996.
[47] Yablonovitch E. Phys. Rev. Lett., 1987, 58:2059.
[48] John S. Phys. Rev. Lett., 1987, 58:2486.
[49] Hu X B, An Q, Li G T, Tao S Y, Liu J. Angew. Chem. Int. Ed., 2006, 45:8145.
[50] 李珩(Li H), 王京霞(Wang J X), 王荣明(Wang R M), 宋延林(Song Y L). 化学进展(Progress in Chemistry), 2011, 23:1060.
[51] Cunin F, Schmedake T A, Link J R, Li Y Y, Koh J, Bhatia S N, Sailor M J. Nat. Mater., 2002, 1:39.
[52] Li Y Y, Kollengode V S, Sailor M J. Adv. Mater., 2005, 17:1249.
[53] Zhao Y J, Xie Z Y, Gu H C, Jin L, Zhao X W, Wang B P, Gu Z Z. NPG Asia Mater., 2012, 4:e25.
[54] Gu H C, Rong F, Tang B C, Zhao Y J, Fu D G, Gu Z Z. Langmuir, 2013, 29:7576.
[55] Zhao X W, Cao Y, Ito F, Chen H H, Nagai K, Zhao Y H, Gu Z Z. Angew. Chem. Int. Ed., 2006, 45:6835.
[56] Xu Y S, Zhang X P, Luan C X, Wang H, Chen B A, Zhao Y J. Biosens. Bioelectron., 2017, 87:264.
[57] Zhao Y J, Zhao X W, Hu J, Li J, Xu W Y, Gu Z Z. Angew. Chem. Int. Ed., 2009, 48:7350.
[58] Wang H, Gu H C, Chen Z Y, Shang L R, Zhao Z, Gu Z Z, Zhao Y J. ACS Appl. Mater. Interfaces, 2017, 9:12914.
[59] Zhang B, Cheng Y, Wang H, Ye B F, Shang L R, Zhao Y J, Gu Z Z. Nanoscale, 2015, 7:10590.
[60] Scillian J J, McHugh T M, Busch M P, Tam M, Fulwyler M J, Chien D Y, G N Vyas. Blood, 1989, 73:2041.
[61] Fenniri Hicham, Ding L H, Ribbe A E, Zyrianov Y. J. Am. Chem. Soc., 2001, 123:8151.
[62] Service R F. Science, 1995, 270:577.
[63] Nicolaou K C, Xiao X Y, Parandoosh Z, Senyei A, Nova M P. Angew. Chem. Int. Ed., 1995, 34:2289.
[64] Mandecki W, Ardelt B, Coradetti T, Davidowitz H, Flint J A, Huang Z L, Kopacka W M, Lin X, Wang Z Y, Darzynkiewicz Z. Cytom. Part A, 2006, 69A:1097.
[65] Nam J M, Thaxton C S, Mirkin C A. Science, 2003, 301:1884.
[66] Liu Y X, Liu L, He Y H, Zhu L, Ma H. Anal. Chem., 2015, 87:5286.
[67] Zhao Y J, Zhao X W, Gu Z Z. Adv. Funct. Mater., 2010, 20:2970.
[68] Dunbar S A, Vander Zee C A, Oliver K G, Karem K L, Jacobson J W. J. Microbiol. Meth., 2003, 53:245.
[69] Dunbar S A. Clin. Chim. Acta, 2006, 363:71.
[70] Reslova N, Michna V, Kasny M, Mikel P, Kralik P. Front. Microbiol., DOI:10.3389/fmicb.2017.00055.
[71] Zhang D S Z, Jiang Y, Yang H, Zhu Y J, Zhang S J, Zhu Y, Wei D, Lin Y, Wang P P, Fu Q H, Xu H, Gu H C. Adv. Funct. Mater., 2016, 26:6146.
[72] Zhang Y, Dong C H, Su L, Wang H J, Gong X Q, Wang H Q, Liu J Q, Chang J. ACS Appl. Mater. Interfaces, 2016, 8:745.
[73] Lee H, Shapiro S J, Chapin S C, Doyle P S. Anal. Chem., 2016, 88:3075.
[74] Zhao Y J, Zhao X W, Pei X P, Hu J, Zhao W J, Chen B A, Gu Z Z. Anal. Chim. Acta, 2009, 633:103.
[75] Zhao Y J, Zhao X W, Sun C, Li J, Zhu R, Gu Z Z. Anal. Chem., 2008, 80:1598.
[76] Yang Z X, Chen B A, Wang H, Xia G H, Cheng J, Pei X P, Wang F, Bao W. Biosens. Bioelectron., 2013, 48:153.
[77] Homola J, Yee S S, Gauglitz G. Sens. Actuators, B, 1999, 54:3.
[78] Wu G H, Datar R H, Hansen K M, Thundat T, Cote R J, Majumdar A. Nat. Biotechnol., 2001, 19:856.
[79] 鲁娜(Lu N), 高安然(Gao A R), 戴鹏飞(Dai P F), 宋世平(Song S P), 樊春海(Fan C H), 王跃林(Wang Y L), 李铁(Li T). 科学通报(Chinese Science Bulletin), 2016, 61:442.
[80] 罗细亮(Luo X L), 徐静娟(Xu J J), 陈洪渊(Chen H Y). 分析化学(Chinese Journal of Analytical Chemistry), 2004, 32:1395.
[81] Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L J, Zhu C, Xu H, Gu Z Z. Adv. Mater., 2009, 21:569.
[82] Wang H, Xu Q H, Shang L R, Wang J, Rong F, Gu Z Z, Zhao Y J. Chem. Commun., 2016, 52:3296.
[83] Zhao Y J, Zhao X W, Tang B C, Xu W Y, Li J, Hu J, Gu Z Z. Adv. Funct. Mater., 2010, 20:976.
[84] Chen H Y, Lahann J. Langmuir, 2011, 27:34.
[85] Wheeldon I, Farhadi A, Bick A G, Jabbari E, Khademhosseini A. Nanotechnology, 2011, 22:212001.
[86] Pampaloni F, Reynaud E G, Stelzer E H K. Nat. Rev. Mol. Cell. Bio., 2007, 8:839.
[87] Van Wezel A L. Nature, 1967, 216:64.
[88] Lee J, Cuddihy M J, Kotov N A. Tissue Eng., Part B, 2008, 14:61.
[89] Liu W, Shang L R, Zheng F Y, Lu J, Qian J L, Zhao Y J, Gu Z Z. Small, 2014, 10:88.
[90] Zheng F Y, Cheng Y, Wang J, Lu J, Zhang B, Zhao Y J, Gu Z Z. Adv. Mater., 2014, 26:7333.
[91] Zhang B, Cai Y L, Shang L R, Wang H, Cheng Y, Rong F, Gu Z Z, Zhao Y J. Nanoscale, 2016, 8:3841.
[92] Shang L R, Fu F F, Cheng Y, Wang H, Liu Y X, Zhao Y J, Gu Z Z. J. Am. Chem. Soc., 2015, 137:15533.
[93] Shang L R, Cheng Y, Wang J, Yu Y R, Zhao Y J, Chen Y P, Gu Z Z. Lab Chip, 2016, 16:251.
[94] Zhang C, Zhao Z Q, Rahim N A A, van Noort D, Yu H. Lab Chip, 2009, 9:3185.
[95] Neu?il P, Giselbrecht S, Länge K, Huang T J, Manz A. Nat. Rev. Drug Discov., 2012, 11:620.
[96] 庄琪琛(Zhuang Q S), 宁芮之(Ning R Z), 麻远(Ma Y), 林金明(Lin J M). 分析化学(Chinese Journal of Analytical Chemistry), 2016, 44:522.
[97] Zheng F Y, Fu F F, Cheng Y, Wang C Y, Zhao Y J, Gu Z Z. Small, 2016, 12:2253.
[98] Fu F F, Shang L R, Zheng F Y, Chen Z Y, Wang H, Wang J, Gu Z Z, Zhao Y J. ACS Appl. Mater. Interfaces, 2016, 8:13840.
[99] Petros R A, DeSimone J M. Nat. Rev. Drug Discov., 2010, 9:615.
[100] Mitragotri S, Burke P A, Langer R. Nat. Rev. Drug Discov., 2014, 13:655.
[101] Kim S H, Shum H C, Kim J W, Cho J C, Weitz D A. J. Am. Chem. Soc., 2011, 133:15165.
[102] Fu F F, Wu Y L, Zhu J Y, Wen S H, Shen M W, Shi X Y. ACS Appl. Mater. Interfaces, 2014, 6:16416.
[103] Ekanem E E, Nabavi S A, Vladisavljevi? G T, Gu S. ACS Appl. Mater. Interfaces, 2015, 7:23132.
[104] Yu X, Cheng G, Zhou M D, Zheng S Y. Langmuir, 2015, 31:3982.
[105] Han H J, Valdepérez D, Jin Q, Yang B, Li Z H, Wu Y L, Pelaz B, Parak W J, Ji J. ACS Nano, 2017, 11:1281.
[106] Bai L, Xie Z Y, Wang W, Yuan C W, Zhao Y J, Mu Z D, Zhong Q F, Gu Z Z. ACS Nano, 2014, 8:11094.
[107] Liu Y, Lee Y H, Zhang Q, Cui Y, Ling X Y. J. Mater. Chem. C, 2016, 4:4312.
[108] Huang C B, Lucas B, Vervaet C, Braeckmans K, Van Calenbergh S, Karalic I, Vandewoestyne M, Deforce D, Demeester J, De Smedt S C. Adv. Mater., 2010, 22:2657.
[109] Han S, Bae H J, Kim J, Shin S, Choi S E, Lee S H, Kwon S, Park W. Adv. Mater., 2012, 24:5924.
[110] You M L, Lin M, Wang S R, Wang X M, Zhang G, Hong Y, Dong Y Q, Jin G R, Xu F. Nanoscale, 2016, 8:10096.
[111] Lee J, Bisso P W, Srinivas R L, Kim J J, Swiston A J, Doyle P S. Nat. Mater., 2014, 13:524.
[112] Li R M, Zhang Y T, Tan J, Wan J X, Guo J, Wang C C. ACS Appl. Mater. Interfaces, 2016, 8:9384.
[1] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[2] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[3] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[4] 王阳, 胡珀, 周帅, 傅佳骏. 稀土上转换发光纳米材料的防伪安全应用[J]. 化学进展, 2021, 33(7): 1221-1237.
[5] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[6] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[7] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.
[8] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[9] 苏沛锋, 吴鸿鑫, 陈永明, 彭飞. 微纳米马达在药物递送中的应用[J]. 化学进展, 2019, 31(1): 63-69.
[10] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[11] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[12] 李子程, 李攻科*, 胡玉玲*. 刺激响应聚合物在生物医药中的应用[J]. 化学进展, 2017, 29(12): 1480-1487.
[13] 宋萍, 叶德楷, 宋世平, 王丽华, 左小磊. DNA水凝胶的制备及生物应用[J]. 化学进展, 2016, 28(5): 628-636.
[14] 刘袖洞,于炜婷,王为,雄鹰,马小军,袁权. 海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用*[J]. 化学进展, 2008, 20(01): 126-139.
[15] 王立凯,冯喜增. 微流控芯片技术在生命科学研究中的应用*[J]. 化学进展, 2005, 17(03): 482-498.