English
新闻公告
More
化学进展 2017, Vol. 29 Issue (8): 879-891 DOI: 10.7536/PC170537 前一篇   后一篇

• 综述 •

零价铝在水介质中的表面作用机制

杨世迎1,2,3*, 张艺萱3, 郑迪3, 辛佳1,3   

  1. 1. 海洋环境与生态教育部重点实验室 青岛 266100;
    2. 山东省海洋环境地质工程重点实验室 青岛 266100;
    3. 中国海洋大学环境科学与工程学院 青岛 266100
  • 收稿日期:2017-05-15 修回日期:2017-07-08 出版日期:2017-08-15 发布日期:2017-07-24
  • 通讯作者: 杨世迎,E-mail:ysy@ouc.edu.cn E-mail:ysy@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21677135)资助

Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review

Shiying Yang1,2,3*, Yixuan Zhang3, Di Zheng3, Jia Xin1,3   

  1. 1. The Key Laboratory of Marine Environment & Ecology, Ministry of Education, Qingdao 266100, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China;
    3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2017-05-15 Revised:2017-07-08 Online:2017-08-15 Published:2017-07-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21677135).
近年来,具有极强还原性能的零价铝(Zero-Valent Aluminum,ZVAl)开始被应用于水中污染物的去除,正在发展成为一种新兴的水处理技术。但是,ZVAl表面被氧化形成的致密氧化层会阻碍其还原性能的发挥,成为该技术发展的限制因素。因此,全面了解ZVAl在水介质中的表面作用机制至关重要。其实,ZVAl与水反应产氢效率高,能源产氢领域的研究已相对深入。二者表面反应过程本质上相同,均是ZVAl失电子发生还原反应,最大的不同是电子的转移目标分别为水介质中的污染物和水介质本身。为克服表面氧化膜的限制,两大领域的学者们通过酸或碱溶解膜、机械球磨或合金化破坏膜、构筑电子通道形成可用膜、热处理改变氧化膜相组成等方法来处理表面膜从而提高ZVAl的反应活性。此外,ZVAl的外界水介质环境(包括温度、压力、水中存在的微量离子和有机酸、(氢)氧化物等)对ZVAl表面作用也存在显著的影响。因此,本文从氧化膜的形成、溶解、破坏、转变以及外界环境对氧化膜的影响角度出发,就目前国内外ZVAl在污染物去除和铝水反应产氢的表面作用机制方面的研究进展进行了综述和展望,以期促进ZVAl在两大领域应用的相互借鉴与共同发展。
In recent years, zero-valent aluminum (ZVAl) has been used to remove contaminants in water environment due to its strong reducibility, which is developing into a new water treatment technology. However, ZVAl can be readily oxidized to form a dense oxide layer when exposed to oxygen or water medium, which will decrease the reductive capacity of ZVAl, and become the biggest limiting factor for the further application of this technology. Therefore, it is crucial to understand the surface reaction mechanism of ZVAl in aqueous media comprehensively. Actually, ZVAl has been widely used in the field of hydrogen generation because the reaction between ZVAl and H2O can generate hydrogen efficiently. In essence, the contaminants removal by ZVAl is the same as the hydrogen generation by Al/H2O reaction. In both cases, ZVAl reduction reaction occurs, and releases electrons. The primary difference between the case of contaminant removal and the case of hydrogen generation is that their electron transfer targets are pollutants in water and the water itself, respectively. In order to overcome the limitation of surface oxide film, researchers from the two fields take measures to improve the reductive capacity of ZVAl, including film dissolution by acid or alkali, film destruction by mechanical ball milling or alloying, useful film generation by building electron channel, film phase transformation by high-heat treatment, and so on. In addition, the environment conditions of water medium, such as temperature, pressure, trace ions and organic acid in water, and (hydr)oxide added, have a significant effect on the surface change of ZVAl. Therefore, in this review, based on the oxide film's formation, dissolution, destruction, transformation and the impact of its external environment, etc., the latest research progress and the surface reaction mechanism of ZVAl in the fields of contaminant removal and hydrogen generation, are summarized and prospected. It is believed that ZVAl would be applied widely in two fields supposing that the limitations of oxide film are overcomed.
Contents
1 Introduction
2 Formation of surface oxide film
2.1 Formation of surface oxide film in air
2.2 Formation of surface oxide film in water
3 Change the surface oxide film to improve reducibility of ZVAl
3.1 Dissolution of film
3.2 Destruction of film
3.3 Phase transformation of film
3.4 Building electronic channels
4 Influence of water environment conditions on the mechanism of ZVAl surface
4.1 Temperature
4.2 Initial pressure
4.3 Trace ions and organic acid in water
4.4 (Hydr)oxide
5 Conclusion and outlook

中图分类号: 

()
[1] 杨世迎(Yang S Y), 郑迪(Zheng D), 常书雅(Chang S Y),石超(Shi C). 化学进展(Progress in Chemistry), 2016, 28(05):754.
[2] Cheng Z H, Fu F L, Pang Y S, Tang B, Lu J W. Chem. Eng. J., 2015, 260:284.
[3] Fan J H, Wang H W, Ma L M. Environ. Sci. Pollut. Res., 2016, 23(16):16686.
[4] Liu W P, Zhang H H, Cao B P, Lin K D, Gan J. Water Res., 2011, 45(4):1872.
[5] 杨世迎(Yang S Y), 石超(Shi C), 徐婷(Xu T), 郑迪(Zheng D). 环境化学(Environmental Chemistry), 2015, 34(10):1785.
[6] Cai M Q, Wei X Q, Song Z J, Jin M C. Ultrason. Sonochem., 2015, 22:167.
[7] 唐孟姣(Tang M J), 薛秀玲(Xue X L), 赖小丽(Lai X L). 环境化学(Environmental Chemistry), 2015, 34(7):1350.
[8] 张宁(Zhang N), 邹华(Zou H), 吴倩云(Wu Q Y). 环境工程学报(Chinese Journal of Environmental Engineering), 2014, 8(12):5237.
[9] 王安琪(Wang A Q). 济南大学硕士论文(Master Dissertation of University of Jinan), 2014.
[10] Chen L H, Huang C C, Lien H L. Chemosphere, 2008, 73(5):692.
[11] Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J. Hazard. Mater., 2011, 189(1/2):76.
[12] Lien H L, Zhang W X. Chemosphere, 2002, 49(4):371.
[13] Bokare A D, Choi W Y. Environ. Sci. Technol., 2009, 43(18):7130.
[14] Wu C C, Hus L C, Chiang P N, Liu J C, Kuan W H, Chen C C, Tzou Y M, Wang M K, Hwang C E. Water Res., 2013, 47(7):2583.
[15] Han C, Zhang L, Chen H, Shan X, Li X, Zhu W, Luo Y. Journal of Environmental Chemical Engineering, 2016, 4(1):711.
[16] Han W J, Fu F L, Cheng Z H, Tang B, Wu S J. J. Hazard. Mater., 2016, 302:437.
[17] Cheng Z H, Fu F L, Dionysiou D D, Tang B. Water Res., 2016, 96:22.
[18] Fu F L, Cheng Z H, Dionysiou D D, Tang B. J. Hazard. Mater., 2015, 298:261.
[19] Vasquez-Medrano R, Treviño P, Ibanez J G, Treviño P. Int. J. Electrochem. Sci., 2014, 9(5):2556.
[20] Fu F L, Han W, Cheng Z H, Tang B. Desalin. Water Treat., 2015, 57(12):1.
[21] Lien H, Yu C C, Lee Y. Chemosphere, 2010, 80(8):888.
[22] 张波(Zhang B),蒋霞(Jiang X),李顺(Li S),吴春笃(Wu C D),许小红(Xu X H). 环境工程学报(Chinese Journal of Environmental Engineering), 2016, 10(8):4271.
[23] Lin K A, Lin C H. Chem. Eng. J., 2016, 297:19.
[24] Lin K A, Lin J Y, Lien H L. Chemosphere, 2017, 172:325.
[25] Ambaryan G N, Vlaskin M S, Dudoladov A O, Meshkov E A, Zhuk A Z, Shkolnikov E I. Int. J. Hydrogen Energy, 2016, 41(39):17216.
[26] Huang X N, Gao T, Pan X L, Wei D, Lv C J, Qin L S, Huang Y X. J. Power Sources, 2013, 229:133.
[27] Dudoladov A O, Buryakovskaya O A, Vlaskin M S, Zhuk A Z, Shkolnikov E I. Int. J. Hydrogen Energy, 2016, 41(4):2230.
[28] 马广璐(Ma G L),庄大为(Zhuang D W), 戴洪斌(Dai H B), 王平(Wang P). 化学进展(Progress in Chemistry), 2012, 24(4):650.
[29] Deng Z Y, Liu Y F, Tanaka Y, Ye J H, Yoshio S. J. Am. Ceram. Soc., 2005, 88(4):977.
[30] Bunker B C, Nelson G C, Zavadil K R, Barbour J C, Wall F D, Sullivan J P, Windisch C F, Engelhardt M H, Baer D R. J. Phys. Chem. B, 2002,106(18):4705.
[31] Gai W Z, Liu W H, Deng Z Y, Zhou J G. Int. J. Hydrogen Energy, 2012, 37(17):13132.
[32] Lin C J, Wang S L, Huang P M, Tzou Y M, Liu J C, Chen C C, Chen J H. Water Res., 2009, 43(20):5015.
[33] Deng Z Y, Ferreira J M F, Tanaka Y, Ye J H. J. Am. Ceram. Soc., 2007, 90(5):1521.
[34] Zhang H H, Cao B P, Liu W P, Lin K D, Feng J. J. Environ. Sci., 2012, 24(2):314.
[35] Wang A Q, Guo W L, Hao F F, Yue X X, Leng Y Q. Ultrason. Sonochem., 2014, 21(2):572.
[36] Wang C, Chou Y, Yen C. Procedia Engineering, 2012, 36:105.
[37] Pyun S I, Moon S M. J. Solid State Electrochem., 2000, 4(5):267.
[38] Zhang J S, Klasky M, Letellier B C. J. Nucl. Mater., 2009, 384(2):175.
[39] Belitskus D. J. Electrochem. Soc., 1970, 117(8):1097.
[40] Porciúncula C B,Marcilio N R,Tessaro I C, Gerchmann M.Braz. J. Chem. Eng., 2012, 29(2):337.
[41] Jung C R, Kundu A, Ku B, Gil J H, Lee H R, Jang J H. J. Power Sources, 2008, 175(1):490.
[42] Chen X Y, Zhao Z W, Hao M M, Wang D Z. J. Power Sources, 2013, 222:188.
[43] Wang H, Lu J, Dong S J, Chang Y, Fu Y G, Luo P. Mater. Trans., 2014, 55(6):892.
[44] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. J. Power Sources, 2009, 192(1):21.
[45] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. Int. J. Hydrogen Energy, 2010, 35(3):1038.
[46] Dai H B, Ma G L, Xia H J, Wang P. Energy Environ. Sci., 2011, 4(6):2206.
[47] Ma G L, Dai H B, Zhuang D W, Xia H J, Wang P. Int. J. Hydrogen Energy, 2012, 37(7):5811.
[48] Ho C Y, Huang C H. Int. J. Hydrogen Energy, 2016, 41(6):3741.
[49] Parsons R. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1967, 13(4):471.
[50] 石超(Shi C).中国海洋大学硕士论文(Master Dissertation of Ocean University of China), 2015.
[51] Razavi-Tousi S S, Szpunar J A. Metall. Mater. Trans. E, 2014, 1(3):247.
[52] Huang X N, Lv C J, Wang Y, Shen H Y, Chen D, Huang Y X. Int. J. Hydrogen Energy, 2012, 37(9):7457.
[53] Wang C P, Yang T, Liu Y H, Ruan J J, Yang S Y, Liu X J. Int. J. Hydrogen Energy, 2014, 39(21):10843.
[54] Razavi-Tousi S S, Szpunar J A. Journal of Alloys & Compounds, 2016, 679:364.
[55] Liu Y A, Wang X H, Liu H Z, Dong Z H, Li S Q, Ge H W, Yan M. Energy, 2015, 89:907.
[56] Razavi-Tousi S S, Szpunar J A. Int. J. Hydrogen Energy, 2013, 38(2):795.
[57] Razavi-Tousi S S, Nematollahi G A, Ebadzadeh T, Szpunar J A. Powder Technol., 2013, 241:166.
[58] Streletskii A N, Kolbanev I V, Borunova A B, Leonov A V. Colloid J., 2004, 66(6):729.
[59] Wang H W, Chung H W, Teng H T, Cao G Z. Int. J. Hydrogen Energy, 2011, 36(23):15136.
[60] Dupiano P, Stamatis D, Dreizin E L. Int. J. Hydrogen Energy, 2011, 36(8):4781.
[61] Mccafferty E. Corros. Sci., 2003, 45(7):1421.
[62] Fan M Q, Sun L X, Xu F. Energy, 2010, 35(3):1333.
[63] Fan M Q, Sun L X, Xu F. Energ. Convers. Manage., 2010, 51(3):594.
[64] Jia Y Y, Shen J, Meng H X, Dong Y M, Chai Y J, Wang N. J. Alloys Compd., 2014, 588:259.
[65] Liu Y A, Wang X H, Liu H Z, Dong Z H, Li S Q, Ge H W, Yan M. Energy, 2015, 84:714.
[66] Alinejad B, Mahmoodi K. Int. J. Hydrogen Energy, 2009, 34(19):7934.
[67] Chen X Y, Zhao Z W, Liu X H, Hao M M, Chen A L, Tang Z Y. J. Power Sources, 2014, 254:345.
[68] Fan M Q, Xu F, Sun L X, Zhao J N, Jiang T Q, Li W X. J. Alloys Compd., 2008, 460(1/2):125.
[69] Ilyukhina A V, Ilyukhin A S, Shkolnikov E I. Hydrogen Energy, 2012, 37(21):16382.
[70] Huang T P, Gao Q, Liu D, Xu S N, Guo C B, Zou J J, Wei C D. Int. J. Hydrogen Energy, 2015, 40(5):2354.
[71] Wang C P, Liu Y H, Liu H X, Yang T, Chen X R, Yang S Y, Liu X J. Sci. Rep., 2015, 5:17428.
[72] Zhang F, Yonemoto R, Arita M, Horita Z. J. Mater. Res., 2016, 31(6):775.
[73] Ziebarth J T, Woodall J M, Kramer R A, Choi G. Int. J.Hydrogen Energy, 2011, 36(9):5271.
[74] Wang W, Chen D M, Yang K. Int. J. Hydrogen Energy, 2010, 35(21):12011.
[75] 黄天平(Huang T P).吉林大学硕士学位论文(Master Dissertation of Jilin University), 2015.
[76] Eom K S, Kwon J Y, Min J K, Kwon H S. J. Mater. Chem., 2011, 21(34):13047.
[77] Kim M, Eom K, Kwon J, Cho E, Kwon H. J. Power Sources, 2012, 217:345.
[78] Eom K, Kim M, Oh S, Cho E, Kwon H. Int. J. Hydrogen Energy, 2011, 36(18):11825.
[79] Ilyukhina A V, Kravchenko O V, Bulychev B M, Shkolnikov E I. Hydrogen Energy, 2010, 35(5):1905.
[80] Fan M Q, Xu F, Sun L X. Int. J. Hydrogen Energy, 2007, 32(14):2809.
[81] Fan M Q, Sun L X, Xu F, Mei D S, Chen D X, Chai W X, Huang F L, Zhang Q M. Int. J. Hydrogen Energy, 2011, 36(16):9791.
[82] 刘姝(Liu S), 孙文强(Sun W Q), 唐锐(Tang R), 李超(Li C), 刑威虎(Xing W H), 范美强(Fan M Q). 固体火箭技术(Journal of Solid Rocket Technology), 2012, (03):367.
[83] Fan M Q, Mei D S, Chen D, Lv C J, Shu K Y. Renew. Energ., 2011, 36(11):3061.
[84] Fan M Q, Liu S, Wang C, Chen D, Shu K Y. Fuel Cells, 2012, 12(4):642.
[85] Zou M S, Guo X Y, Huang H T, Yang R J, Zhang P. J. Power Sources, 2012, 219:60.
[86] Yang X H, Yuan B, Liu J. Int. J. Hydrogen Energy, 2016, 41(15):6193.
[87] Yuan B, Tan S, Jing L.Int. J. Hydrogen Energy, 2016, 41(3):1453.
[88] Yoo H S, Ryu H Y, Cho S S, Han M H, Bae K S, Lee J H. Int. J. Hydrogen Energy, 2011, 36(36):15111.
[89] Xu J, Pu Y, Qi W K, Yang X J J, Tang Y, Wan P, Fisher A. Chemosphere, 2017, 166:197.
[90] Deng Z Y, Liu Y F, Tanaka Y, Zhang H W, Ye J H, Kagawa Y. J. Am. Ceram. Soc., 2005, 88(10):2975.
[91] Deng Z Y, Liu W H, Gai W Z, Sakka Y, Ye J H, Ou Z W. J. Am. Ceram. Soc., 2010, 93(9):2534.
[92] Deng Z Y, Tang Y B, Zhu L L, Sakka Y, Ye J H. Int. J. Hydrogen Energy, 2010, 35(18):9561.
[93] Liu W H, Gai W Z, Deng Z Y, Tang J W, Dreizin E. J. Am. Ceram. Soc., 2012, 95(4):1193.
[94] Fang C S, Gai W Z, Deng Z Y. J. Am. Ceram. Soc., 2014, 97(1):44.
[95] Gai W Z, Shi Y, Deng Z Y, Zhou J G. Int. J. Hydrogen Energy, 2015., 40(36):12057.
[96] Huang X, Chen Z, Gao T, Huang Q, Niu F, Qin L, Huang Y. Energy Technol., 2013, 1(12):751.
[97] Huang C S, Lo S L, Lien H L. Chem. Eng. J., 2015, 273:413.
[98] Liang G H, Gai W Z, Deng Z Y, Xu P, Cheng Z. RSC Adv., 2016, 6(42):35305.
[99] Gai W Z, Deng Z Y. Int. J. Hydrogen Energy, 2014, 39(25):13491.
[100] Gai W Z, Deng Z Y. J. Power Sources, 2014, 245(1):721.
[101] 张宁(Zhang N), 邹华(Zou H), 吴倩云(Wu Q Y), 朱荣(Zhu R). 环境化学(Environmental Chemistry), 2015, 34, (07):1343.
[102] Liu X, Tian Y, Zhou X, Liu Z, Huang L. J. Chin. Chem. Soc., 2017, 64(1):55.
[103] Skrovan J, Troczynski T, Alfantazi A. ECS Transactions, 2010, 28:157
[104] Teng H, Lee T, Chen Y, Wang H, Cao G. J. Power Sources, 2012, 219:16.
[105] Chen Y, Teng H, Lee T, Wang H. Int. J. Energy Environ. Eng., 2014, 5(2/3):87.
[106] Gai W Z, Fang C S, Deng Z Y. Int. J. Energ. Res., 2014, 38(7):918.
[107] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. Int. J. Energ. Res., 2009, 34(20):8511.
[108] Zhu F, Li L, Ma S, Shang Z. Chem. Eng. J., 2016, 302:663.
[109] Ai Z, Gao Z, Zhang L, He W, Yin J J. Environ. Sci. Technol., 2013, 47(10):5344.
[110] Murphy A P. Nature, 1991, 350(6315):223.
[111] Yang S, Zheng D, Ren T, Zhang Y, Xin J. Water Res., 2017,123:704.
[1] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[2] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[3] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[4] 陈立香, 李祎頔, 田晓春, 赵峰. 革兰氏阳性电活性菌的电子传递及其应用[J]. 化学进展, 2020, 32(10): 1557-1563.
[5] 杨世迎, 张翱, 任腾飞, 张宜涛. 炭基材料催化过氧化物降解水中有机污染物:表面作用机制[J]. 化学进展, 2017, 29(5): 539-552.
[6] 杨世迎, 郑迪, 常书雅, 石超. 基于零价铝的氧化/还原技术在水处理中的应用[J]. 化学进展, 2016, 28(5): 754-762.
[7] 杨波,余刚,张祖麟. 电化学方法用于氯代芳烃污染物去除的研究*[J]. 化学进展, 2006, 18(01): 87-92.
[8] 彭立凤. 有机溶剂对酶催化活性和选择性的影响*[J]. 化学进展, 2000, 12(03): 296-.