English
新闻公告
More
化学进展 2017, Vol. 29 Issue (10): 1260-1272 DOI: 10.7536/PC170532 前一篇   后一篇

• 综述 •

钒氧基电极材料特点及其改性方法

李秀娟1, 曹云鹤1,2, 华康1, 王畅1, 徐卫林1, 方东1,2*   

  1. 1. 武汉纺织大学材料科学与工程学院 湖北省纺织新材料与先进加工技术省部共建国家重点实验室培育基地 湖北省纺织新材料及其应用重点实验室 武汉 430200;
    2. 昆明理工大学材料科学与工程学院 昆明 650093
  • 收稿日期:2017-05-12 修回日期:2017-07-23 出版日期:2017-10-15 发布日期:2017-08-29
  • 通讯作者: 方东,e-mail:csufangdong@gmail.com E-mail:csufangdong@gmail.com
  • 基金资助:
    国家自然科学基金项目(No.51201117,51741102),云南省教育厅重大专项(No.2016CYH08)和云南省科技厅创新团队(No.2017HC033)资助

Characterization and Modification Method of Oxovanadium-Based Electrode Materials

Xiujuan Li1, Yunhe Cao1,2, Kang Hua1, Chang Wang1, Weilin Xu1, Dong Fang1,2*   

  1. 1. State Key Laboratory of New Textile Materials & Advanced Processing Technologies and Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei Key Laboratory of Advanced Textile Materials & Application, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China;
    2. College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2017-05-12 Revised:2017-07-23 Online:2017-10-15 Published:2017-08-29
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51201117, 51741102), the Major Projects of Yunnan Provincial Education Department (No. 2016CYH08), and the Innovation Team of Yunnan Provincial Science and Technology Department(No. 2017HC033).
钒氧基化合物作为钒基化合物中重要的一员,其具有比容量高、价格低廉等特点,是一种极具有前景的电极材料,然而其电导率低、可溶解于电解液,造成充放电过程中倍率、循环稳定性差。本文介绍了钒氧基化合物作为锂离子/钠离子电池电极材料的研究进展,重点介绍了钒氧基化合物电化学性能降低的原因。综述了针对钒氧基化合物问题所采用的离子掺杂、表面包覆、导电物质复合解决办法,并讨论了一些具有代表性的改性后电极材料的制备方法、电化学性能及相应机制,且展望了钒氧基化合物未来的研究方向。
Among various vanadium-based materials, oxovanadium-based materials are promising candidates for lithium-ion battery electrodes because of their high capacity and low price. However, due to their fairly low conductivity and dissolution in electrolyte, the practical usage of oxovanadium-based materials shows poor rate capability and cycling stability. In this review, the recent progress in oxovanadium-based materials for lithium/sodium ion batteries is introduced and focused on their storage and capacity fading mechanisms. To overcome the low conductivity and irreversible phase transition, metal-doped, surface coating and conductive material composite are reviewed. Synthesis method, electrochemical performance and possible mechanism of typical modified electrode materials are discussed and the prospects of oxovanadium-based materials are also discussed.
Contents
1 Introduction
2 Structure characterization of vanadium oxide electrode materials
3 Electrochemical performance of vanadium oxide electrode materials
3.1 Lithium/sodium ion storage performance of vanadium oxide electrode materials
3.2 Vanadium oxide electrode materials for supercapacitors
3.3 Capacity fading mechanism of vanadium oxide electrode materials
4 Modification research of vanadium oxide electrode materials
4.1 Ion-doping
4.2 Surface coating
4.3 Conductive material composite
4.4 The lithium intercalation mechanism of modified vanadium oxide
5 Conclusion

中图分类号: 

()
[1] Gu M, Belharouak I, Zheng J M, Wu H M, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C M. ACS Nano, 2013, 7:760.
[2] Tu J, Zhao X B, Cao G S, Zhuang D G, Zhu T J, Tu J P. Electrochim. Acta, 2006, 51(28):6456.
[3] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144(4):1188.
[4] Kim J H, Myung S T, Yoon C S, Kang S G, Sun Y K. Chem. Mater., 2004, 16:906.
[5] Wang C, Fang D, Wang H E, Cao Y H, Xu W L, Liu X Q, Luo Z P, Li G Z, Jiang M, Xiong C X. Scientific Reports, 2016, 6:20826.
[6] Wang Y, Takahashi K, Lee K, Cao G Z. Adv. Funct. Mater., 2006, 16:1133.
[7] Mai L Q, Xu L, Han C H, Xu X, Luo Y Z, Zhao S Y, Zhao Y L, Nano Lett., 2010, 10(11):4750.
[8] 陈昌国(Chen C G), 刘渝萍(Liu Y P), 李兰(Li L). 无机材料学报(Journal of Inorganic Materials), 2004, 19(6):1225.
[9] Mai L Q, Xu X, Xu L, Han C H. J. Mater. Chem., 2011, 26(17):2175.
[10] 刘丽敏(Liu L M), 李长江(li C J). 北京化工学院学报(自然科学版) (Journal of Beijing University of Chemical Technology(Natural Science Edition)), 1993, 20(3):118.
[11] Fang D, Li L C, Xu W L, Li G Z, Luo Z P, Liang C W, Ji Y S, Xu J, Xiong C X. RSC Adv., 2014, 4:25205.
[12] Liang C W, Fang D, Cao Y H, Li G Z, Luo Z P, Zhou Q H, Xiong C X, Xu W L. J. Colloid Interface Sci., 2015, 439:69.
[13] Cao Y H, Fang D, Wang C, Li L C, Xu W L, Luo Z P, Liu X Q, Xiong C X, Liu S Q. RSC Adv., 2015, 5:42955.
[14] Fang D, Cao Y H, Liu R N, Xu W L, Liu S Q, Luo Z P, Liang C W, Liu X Q, Xiong C X. Appl. Surf. Sci., 2016, 360:658.
[15] Wang C, Cao Y H, Luo Z P, Li G Z, Xu W L, Xiong C X, He G Q, Wang Y D, Li S, Liu H, Fang D. Chem. Eng. J., 2017, 307:382.
[16] Cao Y H, Fang D, Liu R N, Jiang M, Zhang H, Li G Z, Luo Z P, Liu X Q, Xu J, Xu W L, Xiong C X. ACS Appl. Mater. Interfaces, 2015, 7(50):27685.
[17] Cao Y H, Fang D, Liu X Q, Luo Z P, Li G Z, Xu W L, Jiang M, Xiong C X. Compos. Sci. Technol., 2016, 137:130.
[18] Wang C, Liu H, Jiang M, Wang Y D, Liu R N, Luo Z P, Liu X Q, Xu W L, Xiong C X, Fang D. Appl. Surf. Sci., 2017, 416:402.
[19] Cao Y H, Chai D Y, Luo Z P, Jiang M, Xu W L, Xiong C X, Li S, Liu H, Fang D. J. Colloid Interface Sci., 2017, 498(15):210.
[20] 方东(Fang D), 徐卫林(Xu W L), 李力成(Li L C), 许杰(Xu J), 柏自奎(Bai Z K). ZL 201410212906.X, 2014.
[21] Mjejri I, Rougier A, Gaudon M. Inorg. Chem., 2017, 56(3):1734.
[22] Liang H P, Du J, Jones T G J, Lawrence N S, Meredith A W. ACS Appl. Mater. Interfaces, 2016, 8:25674.
[23] Abello L, Husson E, Repelin Y R, Lucazeau G. Spectrochim. Acta A, 1983, 39(7):641.
[24] Murphy D W, Christian P A, Disalvo F J, Waszczak J V. Inorg. Chem., 1979, 18(10):2800.
[25] Laubach S, Schmidt P C, Thißen A, Javier F, Madrigal F, Wu Q H. Phys. Chem. Chem. Phys., 2007, 9:2564.
[26] Chernova N A, Roppolo M, Dillon A C, Whittingham M S. J. Mater. Chem., 2009, 19:2526.
[27] Kachi S, Takada T, Kosuge K. J. Phys. Soc. Japan, 1963, 18:1839.
[28] Dernier P D. Mater. Res. Bull., 1974, 9:955.
[29] Gossard C, Dissalvo F J, Erich L C, Remeika J P, Yasuoka H, Kosuge K, Kachi S, Phys. Rev. B, 1974, 10:4178.
[30] Kawashima K, Ueda Y, Kosuge K, Kachi S. J. Cryst. Growth, 1974, 26:321.
[31] Howing J, Gustafsson T, Thomas J O. Acta Cryst. B, 2003, 59:747.
[32] Wu C Z, Xie Y, Lei L Y, Hu S Q, Ouyang C Z. Adv. Mater., 2006, 18:1727.
[33] Zhang P F, Zhao L Z, An Q L, Zhou L, Wei X J, Sheng J Z, Mai L Q. Small, 2016, 8:1082.
[34] Li H Q, He P, Wang Y G, Hosono E, Zhou H S. J. Mater. Chem., 2011, 21:10999.
[35] Wang W, Jiang B, Hu L W, Lin Z S, Hou J G, Jiao S Q. J. Power Sources, 2014, 250:181.
[36] Qiao H, Zhu X J, Zheng Z, Liu L, Zhang L Z. Electrochem. Commun., 2006, 8(1):21.
[37] Saidi M Y, Koksbang R, Saidi E S, Barker J. Electrochim. Acta, 1997, 42(8):1181.
[38] Xu Y, Zheng L, Wu C Z, Qi F, Xie Y. Chem. -Eur. J., 2011, 17(1):384.
[39] Delmas C, Brbthes S, Menetrier M. J. Power Sources, 1991, 34:113.
[40] Delmas C, Cognac-Auradou H, Cocciantelli J M, Menetrier M, Doumerc J P. Solid State Ionics, 1994, 69:257.
[41] Wang Y, Cao G. Cheminform, 2006, 37:2787.
[42] Su D, Wang G. ACS Nano, 2013, 7:11218.
[43] Tepavcevic S, Xiong H, Stamenkovic V R, Zuo X, Balasubramanian M, Prakapenka V B, Johnson C S, Rajh T. ACS Nano, 2012, 6:530.
[44] Liu L, Liu Q, Zhao W, Li G C, Wang L M, Shi W D, Chen L. Nanotechnology, 2017, 28:065404.
[45] Mai L Q, Dong F, Xu X, Luo Y Z, An Q Y, Zhao Y L, Pan J, Yang J N. Nano Lett., 2013, 13(2):740.
[46] Chan C K, Peng H L, Twesten R D, Jarausch K, Zhang X F, Cui Y. Nano Lett., 2007, 7(2):490.
[47] Takahashi K, Limmer S J, Wang Y, Cao G Z. J. Phys. Chem. B, 2004, 108(28):9795.
[48] Li Y W, Yao J H, Uchaker E, Yang J W, Huang Y X, Zhang M, Cao G Z. Adv. Energy Mater., 2013, 3(9):1171.
[49] An Q Y, Zhang P F, Xiong F Y, Wei Q L, Sheng J Z, Wang Q Q, Mai L Q. Nano Res., 2015, 8:481.
[50] Zhang P F, Zhao L Z, An Q Y, Wei Q L, Zhou L, Wei X J, Sheng J Z, Mai L Q. Small, 2016, 8:1082.
[51] Su D W, Wang G X. ACS Nano, 2013, 7:11218.
[52] Su D W, Dou S X, Wang G X. J. Mater. Chem. A, 2014, 2:11185.
[53] Zhu K, Zhang C F, Guo S H, Yu H J, Liao K M, Chen G, Wei Y J, Zhou H S. Chem. Electro. Chem., 2015, 2:1660.
[54] Wu Z P, Qiu W T, Chen Y X, Luo Y, Huang Y C, Lei Q F, Guo S B, Liu P, Balogun M, Tong Y X. J. Mater. Chem. A, 2017, 5:756.
[55] Tian X C, Xu X, He L, Wei Q L, Yan M Y, Xu L, Zhao Y L, Yang C C, Mai L Q. J. Power Sources, 2014, 255:235.
[56] Fei H L, Lin Y S, Wei M D. J. Colloid Interface Sci., 2014, 425:1.
[57] Whittingham M S. Chem. Rev., 2004, 104:4271.
[58] Wang J X, Curtis C J, Schulz D L, Zhang J G. J. Electrochem. Soc., 2004, 151:A1.
[59] Baddour-Hadjean R, Pereira-Ramos J P, Navone C, Smirnov M. Chem. Mater., 2008, 20:1916.
[60] 万慧(Wan H), 程浩(Chen H), 胡兵兵(Hu B B), 余丹梅(Yu D M). 电池(Battery), 2017, 47(1):60.
[61] Zhu J X, Cao L J, Wu Y S, Gon Y J, Liu Z, Hoster H E, Zhang Y H, Zhang S T, Yang S B, Yan Q Y, Ajayan P M, Vajtai R. Nano Lett., 2013, 13(11):5408.
[62] Chen K F, Xue D F. ACS Appl. Mater. Interfaces, 2016, 8(43):29522.
[63] Rakhi R B, Nagaraju D H, Beaujugea P, Alshareef H N. Electrochim. Acta, 2016, 220:601.
[64] Sudant G, Baudein E, Dunn B, Tarascon J M. J. Electrochem. Soc., 2004, 151(5):A666.
[65] Arnoldussen T C. J. Electrochem. Soc., 1981, 128:117.
[66] Mansour A N, Smith P H, Baker W M, Balasubramanian M, McBreen J. Electrochim. Acta, 2002, 47:3151.
[67] Coustier F, Lee J M, Passerini S, Smyrl W H. Solid State Ionics, 1999, 116:279.
[68] Meng J S, Liu Z A, Niu C J, Xu X M, Liu X, Zhang G B, Wang X P, Huang M, Yu Y, Mai L Q. J. Mater. Chem. A, 2016, 4:4893.
[69] Bruce P G, Scrosati B, Tarascon J M. Angew. Chem. Int. Ed., 2008, 47:2930.
[70] Zhou W, Dai X C, Fu T M, Xie C, Liu J, Lieber C M. Nano Lett., 2014, 14:1614.
[71] Wu Y, Xiang J, Yang C, Lu W, Lieber C M. Nature, 2004, 430:61.
[72] Lukatskaya M R, Mashtalir O, Ren C E, Dall Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Science, 2013, 341:1502.
[73] He H N, Shang Z G, Huang X B, Tan S, Sun D, Xu G Q, Tang Y G, Wang H Y. J. Electrochem. Soc., 2016, 163(10):A2349.
[74] Mai L Q, Hu B, Chen W, Qi Y, Lao C, Yang R, Dai Y, Wang Z L. Adv. Mater., 2007, 19:3712.
[75] Mai L Q, Li H, Zhao Y L, Xu L, Xu X, Luo Y Z, Zhang Z F, Ke W, Niu C J, Zhang Q J. Sci. Rep., 2013, 3:1718.
[76] Mai L Q, Tian X C, Xu X, Chang L, Xu L. Chem. Rev., 2014, 114:11828.
[77] Zhao Y L, Han C H, Yang J W, Su J, Xu X M, Li S, Xu L, Fang R P, Jiang H, Zuo X D, Song B, Mai L Q, Zhang Q J. Nano Lett., 2015, 15:2180.
[78] Andrukaitis E. J. Power Sources, 1995, 54(2):470.
[79] Farcy J, Maingot S, Soudan P. Solid State Ionics, 1997, 99(1):61.
[80] Maingot S, Deniard P, Baffier N, Pereira-Ramos J P, Kahn-Harari A, Brec R, Willmann P. J. Power Sources, 1995, 54:342.
[81] Li S R, Ge S Y, Qiao Y, Chen Y M, Feng X Y, Zhu J F, Chen C H. Electrochim. Acta, 2012, 64:81.
[82] Zhu D, Liu H, Lv L,Yao Y D, Yang W Z. Scripta Mater., 2008, 59:642.
[83] Zhan S Y, Wang C Z, Nikolowski K, Ehrenberg H, Chen G, Wei Y J. Solid State Ionics, 2009, 180:1198.
[84] Wei Y J, Ryu C W, Kim K B. J. Alloys Compd., 2008, 459:L13.
[85] Zhan S Y, Wei Y J, Bie X F, Wang C Z, Du F, Chen G, Hu F. J. Alloys Compd., 2010, 502:92.
[86] Lu S, Xue Z D, Chen Y Q, Wan F C, Zhu Q Y, Zakharova G S. Ionics, 2017, 23(10):2855.
[87] Wei Q L, Jiang Z Y, Tan S S, Li Q D, Huang L,Yan M Y, Zhou L, An Q Y, Mai L Q. ACS Appl. Mater. Interfaces, 2015, 7:18211.
[88] Niu C J, Huang M, Wang P Y, Meng J S, Liu X, Wang X P, Zhao K N, Yu Y, Wu Y Z, Lin C, Mai L Q. Nano Res., 2016, 9(1):128.
[89] Ali G, Lee J H, Oh S H, Cho B W, Nam K W, Chung K Y. ACS Appl. Mater. Interfaces, 2016, 8:6032.
[90] Mai L Q, Xu X, Han C H, Luo Y Z, Xu L, Wu Y A, Zhao Y L. Nano Lett., 2011, 11:4992.
[91] Lai C, Li G R, Dou Y Y, Gao X P. Electrochim. Acta, 2010, 55:4567.
[92] Ruffo R, Wessells C, Huggins R A, Cui Y. Electrochem. Commun., 2009, 11:247.
[93] Cui C J, Wu G M, Yang H Y, She S F, Shen J, Zhou B, Zhang Z H. Electrochim. Acta, 2010, 55:8870.
[94] Chao D L, Xia X H, Liu J L, Fan Z X, Ng C F, Lin J Y, Zhang H, Shen Z X, Fan H J. Adv. Mater., 2014, 26(33):5794.
[95] Sun D, Xu G Q, Wang H Y, Zeng X G, Ma Y, Tang Y G, Liu Y N, Pan Y F. Electrochim. Acta, 2015, 157:211.
[96] Liu P, Wang B, Sun X M, Gentle L, Zhao X S. Electrochim. Acta, 2016, 213:557.
[97] Tang W, Gao X W, Zhu Y S, Yue Y B, Shi Y, Wu Y P, Zhu K. J. Mater. Chem., 2012, 22:20143.
[98] Liu L L, Wang X J, Zhu Y S, Hu C L, Wu Y P, Holze R. J. Power Sources, 2013, 224:290.
[99] Kang H Y, Liu Y C, Shang M H, Lu T Y, Wang Y J, Jiao L F. Nanoscale, 2015, 7:9261.
[100] Xu H T, Chen J D, Zhang H J, Zhang Y, Li W X, Wang Y. J. Mater. Chem. A, 2016, 4:4098.
[101] Shin J, Jung H, Kim Y, Kim J. J. Alloys Compd., 2014, 589:322.
[102] Channu V R, Ravichandran D, Rambabu B, Holze R. Appl. Surf. Sci., 2014, 305:596.
[103] Yang Y, Li L, Fei H L, Peng Z W, Ruan G D, Tour J M. ACS Appl. Mater. Interfaces, 2014, 6:9590.
[104] Liu Q, Li Z F, Liu Y D, Zhang H Y, Ren Y, Sun C J, Lu W Q, Zhou Y, Stanciu L, Stach E A, Xie J. Nat. Commun., 2015, 6:6127.
[105] Yan M Y, Wang F C, Han C H, Ma X Y, Xu X, An Q Y, Xu L, Niu C J, Zhao Y L, Tian X C, Hu P, Wu H G, Mai L Q. J. Am. Chem. Soc., 2013, 135:18176.
[106] He J Y, Wang W M, Zou Z G, Long F, Fu Z Y. Ionics, 2014, 20(8):1063.
[107] Xu N, Liang J Q, Qian T, Yang T Z, Yan C Y. RSC Adv., 2016, 6:98581.
[108] Ren G F, Hoque M D F, Pan X, Warzywoda J, Fan Z Y. J. Mater. Chem. A, 2015, 3:10787.
[109] Raju V, Rains J, Gates C, Luo W, Wang X F, Stickle W F, Stucky G D, Ji X L, Nano Lett., 2014, 14:4119.
[110] Nethravathi C, Viswanath B, Michael J, Rajamath M. Carbon, 2012, 50:4839.
[111] Deng L J, Ma Z Y, Li X B, Fan G. Mater. Res. Bull., 2015, 70:600.
[112] Cheng J L, Wang B, Xin H L, Yang G C, Cai H Q, Nie F D, Huang H. J. Mater. Chem. A, 2013, 1:10814.
[113] Wang H Y, Ren Y, Wang Y, Wang W J, Liu Su Q. Cryst. Eng. Comm., 2012, 14:2831.
[114] Wang H Y, Huang K L, Huang C H, Liu S Q, Ren Y, Huang X B. J. Power Sources, 2011, 196:5645.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[7] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[8] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[9] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[10] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[11] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[12] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[13] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[14] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[15] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.