English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1072-1081 DOI: 10.7536/PC170526 前一篇   后一篇

• 综述 •

纳米零价铁与土壤组分的相互作用及其环境效应

王艳龙, 林道辉*   

  1. 浙江大学环境科学系 杭州 310058
  • 收稿日期:2017-05-10 修回日期:2017-06-21 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 林道辉,e-mail:lindaohui@zju.edu.cn E-mail:lindaohui@zju.edu.cn
  • 基金资助:
    国家重点研发计划项目(No.2017YFA0207003)、国家自然科学基金项目(No.21621005,21525728)和国家重点基础研究发展计划(973)项目(No.2014CB441104)资助

The Interaction Between Nano Zero-Valent Iron and Soil Components and Its Environmental Implication

Yanlong Wang, Daohui Lin*   

  1. Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
  • Received:2017-05-10 Revised:2017-06-21 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Key Research and Development Program of China (No. 2017YFA0207003), the National Natural Science Foundation of China (No. 21621005, 21525728) and the State Key Development Program for Basic Research of China (973)(No. 2014CB441104).
纳米零价铁(nZVI)具有良好的还原活性和吸附性能,已应用于土壤和地下水污染修复,且前景广阔。但性能优越的nZVI会与土壤组分相互作用,不仅可能影响土壤理化性质及其生态功能,也会影响nZVI的存在形态和修复功能。本文阐述了nZVI与土壤空气、孔隙水、黏土矿物、有机质、微生物等土壤组分的相互作用,分析了其对相应土壤组分及土壤整体理化性质的影响,探讨了各土壤组分作用下nZVI的形态转化,并提出了几个需要进一步研究的科学问题。本文将有助于nZVI环境修复应用领域的科学研究与技术进步。
Nano zero-valent iron (nZVI), possessing excellent reductive activity and adsorption performance, has been and will be widely applied in the remediation of contaminated soil and groundwater. However, superior reactive nZVI can also interact with soil components, which may not only affect soil properties and its ecological functions but also impact on the existing form and remediation function of nZVI.Interactions between nZVI and soil air, pore water, clay minerals, organic matter, and microorganism are addressed, and the influences on the soil composition and property and on the transformation and function of nZVI are discussed. Under the influence of soil components, nZVI may be transformed to various iron-based chemicals, such as Fe3O4, γ-Fe2O3, α-Fe2O3, α-FeOOH, and γ-FeOOH. Meanwhile, nZVI and its derivates would affect the soil environment by altering soil air composition, pore water pH, and/or physicochemical properties of soil clay minerals and organic matter. Furthermore, nZVI can also affect the soil microbial community, facilitating or inhibiting microbial growth and reproduction. The microbe initiating transformation can regulate the remediation function and fate of nZVI in the soil environment. At the end of the text, future research directions are put forward. This review is believed to boost scientific research and technology advance in environmental applications of nZVI.
Contents
1 Introduction
2 Interaction between nZVI and soil air and its environmental implication
2.1 Interaction between soil air and nZVI and its effect on the transformation and function of nZVI
2.2 Effects of nZVI on soil air and its environmental implication
3 Interaction between nZVI and soil pore water and its environmental implication
3.1 Interaction between soil pore water and nZVI and its effect on the transformation and function of nZVI
3.2 Environmental behavior of nZVI in soil pore water
3.3 Effects of nZVI on soil pore water and its environmental implication
4 Interaction between nZVI and clay minerals and its environmental implication
4.1 Interaction between clay minerals and nZVI and its effect on the transformation and function of nZVI
4.2 Effects of nZVI on clay minerals and its environmental implication
5 Interaction between nZVI and soil organic matter and its environmental implication
5.1 Interaction between soil organic matter and nZVI and its effect on the transformation and function of nZVI
5.2 Effects of nZVI on soil organic matter and its environmental implication
6 Interaction between nZVI and soil microorganisms and its environmental implication
6.1 Toxicity mechanisms of nZVI to soil microorganisms
6.2 Effects of nZVI on soil microbial community structure
6.3 Interaction between soil microorganisms and nZVI and its potential impact
7 Conclusion

中图分类号: 

()
[1] Zhang W X. J. Nanopart. Res., 2003, 5:323.
[2] Liu Y, Majetich S A, Tilton R D, Sholl D S, Lowry G V. Environ. Sci. Technol., 2005, 39:1338.
[3] Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50:7290.
[4] Sheng G D, Yang P J, Tang Y N, Hu Q Y, Li H, Ren X M, Hu B W, Wang X K, Huang Y Y. Appl. Catal. B, 2016, 193:189.
[5] Song H, Carraway E R. Environ. Sci. Technol., 2005, 39:6237.
[6] Wu D, Shen Y, Ding A, Mahmood Q, Liu S, Tu Q. J. Hazard. Mater., 2013, 262:649.
[7] Xin Z, Lin Y M, Shan X Q, Chen Z L. Chemical Engineering Journal, 2010, 158:566.
[8] Shih Y H, Hsu C Y, Su Y F. Sep. Purif. Technol., 2011, 76:268.
[9] Machado S, Stawiński W, Slonina P, Pinto A R, Grosso J P, Nouws H P A, Albergaria J T, Delerue-Matos C. Sci. Total Environ., 2013, 461:323.
[10] Lundin L, MoltóJ, Fullana A. Chemosphere, 2013, 91:740.
[11] Karn B, Otto M. Ciencia & Saude Coletiva, 2011, 16:165.
[12] Yan W, Lien H L, Koel B E, Zhang W X. Environ. Sci. Processes Impacts, 2013, 15:63.
[13] Mueller N C, Braun J, Bruns J, ? erník M, Rissing P, Rickerby D, Nowack B. Environ. Sci. Pollut. Res. Int., 2012, 19:550.
[14] Abdala D B, Northrup P A, Arai Y, Sparks D L. J. Colloid Interface Sci., 2015, 437:297.
[15] Zhou D, Jin S, Wang Y, Wang P, Weng N, Wang Y. Soil Sediment Contam., 2012, 21:101.
[16] Dong H, Zhao F, Zeng G, Tang L, Fan C, Zhang L, Zeng Y, He Q, Xie Y, Wu Y. J. Hazard. Mater., 2016, 312:234.
[17] Kim H S, Ahn J Y, Hwang K Y, Kim I K, Hwang I. Environ. Sci. Technol., 2010, 44:1760.
[18] Cabot A, Puntes V F, Shevchenko E, Yin Y, Balcells L, Marcus M A, Hughes S M, Alivisatos A P. J. Am. Chem. Soc., 2007, 129:10358.
[19] Wang Q, Lee S, Choi H. J. Phys. Chem. C, 2010, 114:2027.
[20] Carpenter A W, Laughton S N, Wiesner M R. Environ. Eng. Sci., 2015, 32:647.
[21] Hu Y, Hao X, Zhao D, Fu K. Chemosphere, 2015, 140:34.
[22] Su C, Puls R W, Krug T A, Watling M T, O'Hara S K, Quinn J W, Ruiz N E. Water Res., 2013, 47:4095.
[23] Su L, Shi X, Guo G, Zhao A, Zhao Y. J. Mater. Cycles Waste Manage., 2013, 15:461.
[24] Jiang D, Hu X, Wang R, Yin D. Chemosphere, 2015, 122:8.
[25] Kim H S, Kim T, Ahn J Y, Hwang K Y, Park J Y, Lim T T, Hwang I. Biochem. Eng. J., 2012, 197:16.
[26] Liu A, Liu J, Zhang W X. Chemosphere, 2015, 119:1068.
[27] He D, Ma J, Collins R N, Waite T D. Environ. Sci. Technol., 2016, 50:3820.
[28] Kumar N, Auffan M, Gattacceca J, Rose J, Olivi L, Borschneck D, Kvapil P, Jublot M, Kaifas D, Malleret L. Environ. Sci. Technol., 2014, 48:13888.
[29] Kanel S R, Manning B, Charlet L, Choi H. Environ. Sci. Technol., 2005, 39:1291.
[30] Kuang W, Han E H, Wu X, Rao J. Corros. Sci., 2010, 52:3654.
[31] Shin E J, Miser D E, Chan W G, Hajaligol M R. Appl. Catal. B, 2005, 61:79.
[32] Reinsch B C, Forsberg B, Penn R L, Kim C S, Lowry G V. Environ. Sci. Technol., 2010, 44:3455.
[33] Liu Y, Phenrat T, Lowry G V. Environ. Sci. Technol., 2007, 41:7881.
[34] Xie Y, Cwiertny D M. Environ. Sci. Technol., 2012, 46:8365.
[35] Phillips D H, Watson D B, Roh Y, Gu B. J. Environ. Qual., 2003, 32:2033
[36] Cantrell K J, Kaplan D I, Wietsma T W. J. Hazard. Mater., 1995, 42:201.
[37] Blowes D W, Ptacek C J, Jambor J L. Environ. Sci. Technol., 1997, 31:3348.
[38] Huber D L. Small, 2005, 36:482.
[39] Glasauer S, Friedl J, Schwertmann U. J. Colloid Interface Sci., 1999, 216:106.
[40] O'Loughlin E J, Gorski C A, Scherer M M, Boyanov M I, Kemner K M. Environ. Sci. Technol., 2010, 44:4570.
[41] Yan W, Ramos M A, Koel B E, Zhang W X. Chem. Commun., 2010, 46:6995.
[42] Saleh N, Kim H J, Phenrat T, Matyjaszewski K, Tilton R D, Lowry G V. Environ. Sci. Technol., 2008, 42:3349.
[43] He F, Zhao D. Appl. Catal. B, 2008, 84:533.
[44] Citeau L, Gaboriaud F, Elsass F, Thomas F, Lamy I. Colloids Surf. A, 2006, 287:94.
[45] Baalousha M. Sci. Total Environ., 2009, 407:2093.
[46] Giasuddin A B M, Kanel S R, Choi H. Environ. Sci. Technol., 2007, 41:2022.
[47] Yang K, Lin D, Xing B. Langmuir, 2009, 25:3571.
[48] Lowry G V, Gregory K B, Apte S C, Lead J R. Environ. Sci. Technol., 2012, 46:6893.
[49] Zhang Y, Chen Y, Westerhoff P, Crittenden J. Water Res., 2009, 43:4249.
[50] Peralta-Videa J R, Zhao L, Lopez-Moreno M L, de la Rosa G, Hong J, Gardea-Torresdey J L. J. Hazard. Mater., 2013, 186:1.
[51] Cornelis G, Pang L, Doolette C, Kirby J K, Mclaughlin M J. Sci. Total Environ., 2013, 463:120.
[52] Cornelis G, Thomas D M, Mclaughlin M J, Kirby J K, Beak D G, Chittleborough D. Soil Sci. Soc. Am. J., 2012, 76:891.
[53] Shoultswilson W A, Zhurbich O I, Mcnear D H, Tsyusko O V, Bertsch P M, Unrine J M. Ecotoxicology, 2011, 20:385.
[54] Bae S, Hanna K. Environ. Sci. Technol., 2015, 49:10536.
[55] Guo X, Yang Z, Liu H, Lv X, Tu Q, Ren Q, Xia X, Jing C. Sep. Purif. Technol., 2015, 146:227.
[56] Rodrigues S, Trindade T, Duarte A, Pereira E, Koopmans G, Römkens P. Trends Anal. Chem., 2016, 75:129.
[57] Alkan M, Demirba? Ö, Do Dg? an M. Micropor. Mesopor. Mater., 2005, 83:51.
[58] Gil-Díaz M M, Pérez-Sanz A, Vicente M Á, Lobo M C. Clean-Soil, Air, Water, 2014, 42:1776.
[59] Zhang M Y, Yu W, Zhao D Y, Gang P. Chin. Sci. Bull., 2010, 55:365.
[60] Pankhurst C E, Yu S, Hawke B G, Harch B D. Biol. Fert. Soils, 2001, 33:204.
[61] Turner B L, Haygarth P M. Sci. Total Environ., 2005, 344:27.
[62] Merrington G, Oliver I, Smernik R J, Mclaughlin M J. Adv. Environ. Res., 2003, 8:21.
[63] Angove M J, Johnson B B, Wells J D. Colloids Surf. A, 1997, 126:137.
[64] Gu X, Evans L J. Geochim. Cosmochim. Acta, 2008, 72:267.
[65] Cruzguzmán M, Celis R, Hermosín M, Koskinen W, Nater E, Cornejo J. Soil Sci. Soc. Am. J., 2006, 70:215.
[66] Joo J C, Shackelford C D, Reardon K F. J. Colloid Interface Sci., 2008, 317:424.
[67] Tufenkji N, Elimelech M. Langmuir, 2005, 21:841.
[68] Kim H J, Phenrat T, Tilton R D, Lowry G V. J. Colloid Interface Sci., 2012, 370:1.
[69] Hou T, Xu R, Tiwari D, Zhao A. J. Colloid Interface Sci., 2007, 310:670.
[70] Jia H, Gu C, Boyd S A, Teppen B J, Johnston C T, Song C, Li H. Soil Sci. Soc. Am. J., 2011, 75:357.
[71] Fang M D, Yuan P, Chen T H, He H P, Yuan A H, Chen K M. Chin. Sci. Bull., 2010, 55:1092.
[72] Pang Z, Yan M, Jia X, Wang Z, Chen J. Acta Scientiae Circumstantiae, 2014, 26:483.
[73] Hendershot W H, Lavkulich L M. Soil Sci. Soc. Am. J., 1983, 47:1252.
[74] Sakurai K, Teshima A, Kyuma K. Soil Sci. Plant Nutr., 1990, 36:73.
[75] Zhuang J, Yu G R. Chemosphere, 2002, 49:619.
[76] Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, Zhu J, Chen T. J. Hazard. Mater., 2009, 166:821.
[77] Duiker S W, Rhoton F E, Torrent J, Smeck N E, Lal R. Soil Sci. Soc. Am. J., 2003, 67:606.
[78] Arias M. Clays Clay Miner., 1995, 43:406.
[79] Nawara K, Romiszewski J, Kijewska K, Szczytko J, Twardowski A, Mazur M, Krysinski P. J. Phys. Chem. C, 2012, 116:5598.
[80] Ng C W W, Coo J L. Can. Geotech. J., 2014, 52:387.
[81] Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B. Chemosphere, 2013, 90:640.
[82] Elliott D W, Zhang W X. Environ. Sci. Technol., 2002, 35:4922.
[83] Tratnyek P G, Scherer M M, Deng B, Hu S. Water Res., 2001, 35:4435.
[84] Xie L, Shang C. Environ. Sci. Technol., 2005, 39:1092.
[85] Wang F F, Wu Y, Gao Y, Li H, Chen Z. Sep. Purif. Technol., 2016, 170:337.
[86] Dong H, Ahmad K, Zeng G, Li Z, Chen G, He Q, Xie Y, Wu Y, Zhao F, Zeng Y. Environ. Pollut., 2016, 211:363.
[87] Dries J, Bastiaens L, Springael D, Kuypers S, Agathos S N, Diels L. Water Res., 2005, 39:3531.
[88] Rao P H, Mak M S H, Liu T Z, Lai K C K, Lo I M C. Chemosphere, 2009, 75:156.
[89] Liu T, Rao P, Lo I M. Sci. Total Environ., 2009, 407:3407.
[90] Liu T, Tsang D C W, Lo I M C. Environ. Sci. Technol., 2013, 42:2092.
[91] Deb S K, Shukla M K. J. Anal. Toxicol., 2011, 1:106.
[92] 王学(Wang X),李勇超(Li Y C), 李铁龙(Li T L),金朝晖(Jin C H). 生态毒理学报(Asian Journal of Ecotoxicology), 2012, 7:49.
[93] Diao M H, Yao M S. Water Res., 2009, 43:5243.
[94] Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quigg A, Santschi P H, Sigg L. Ecotoxicology, 2008, 17:372.
[95] El-Temsah Y S, Joner E J. Chemosphere, 2012, 89:76.
[96] Keenan C R, Gothgoldstein R, Lucas D, Sedlak D L. Environ. Sci. Technol., 2009, 3:4555.
[97] Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42:1262.
[98] Joo S H, Feitz A J, Sedlak D L, Waite T D. Environ. Sci. Technol., 2005, 39:1263.
[99] Xia T, Kovochich M, Liong M, Zink J I, Nel A E. ACS Nano, 2008, 2:85.
[100] Singh N, Manshian B, Jenkins G J, Griffiths S M, Williams P M, Maffeis T G, Wright C J, Doak S H. Biomaterials, 2009, 30:3891.
[101] Kadar E, Tarran G A, Jha A N, Al-Subiai S N. Environ. Sci. Technol., 2011, 45:3245.
[102] Tilston E L, Collins C D, Mitchell G R, Princivalle J, Shaw L J. Environ. Pollut., 2013, 173:38.
[103] Fajardo C, Ortíz L T, Rodríguez-Membibre M L, Nande M, Lobo M C, Martin M. Chemosphere, 2012, 86:802.
[104] Saccàet M L, Fajardo C, Costa G, Lobo C, Nande M, Martin M. Chemosphere, 2014, 104:184.
[105] Pawlett M, Ritz K, Dorey R A, Rocks S, Ramsden J, Harris J A. Environ. Sci. Pollut. Res. Int., 2013, 20:1041.
[106] SaccàM L, Fajardo C, Nande M, Martín M. Microb. Ecol., 2013, 66:806.
[107] Něme D? ek J, Lhotsk Dý O, Cajthaml T. Sci. Total Environ., 2014, 486:739.
[108] Shin K H, Cha D K. Chemosphere, 2008, 72:257.
[109] Jeffrey R, Melchers R E. Corros. Sci., 2003, 45:693.
[110] Emerson D, Weiss J V. Geomicrobiol. J., 2004, 21:405.
[111] Lovley D R, Coates J D. Curr. Opin. Microbiol., 2000, 3:252.
[1] 钟佳利, 王炜罡, 彭超, 马楠, 吴志军, 葛茂发. 大气气溶胶吸湿性及其对环境的影响[J]. 化学进展, 2022, 34(4): 801-814.
[2] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[3] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[4] 魏晨辉, 付翯云, 瞿晓磊, 朱东强. 溶解态黑碳的环境过程研究[J]. 化学进展, 2017, 29(9): 1042-1052.
[5] 邱心泓 方战强. 修饰型纳米零价铁降解有机卤化物的研究*[J]. 化学进展, 2010, 22(0203): 291-297.
[6] 吴世康. 具有荧光发射能力有机化合物的光物理和光化学问题研究[J]. 化学进展, 2005, 17(01): 15-39.