English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1021-1029 DOI: 10.7536/PC170522 前一篇   后一篇

• 综述 •

人工碳纳米材料的环境转化及其效应

李旭光, 杜婷婷, 刘金, 刘新蕾, 马朋坤, 戚豫, 陈威*   

  1. 南开大学环境科学与工程学院 环境污染过程与基准教育部重点实验室 天津市城市生态环境修复与污染防治重点实验室 天津 300350
  • 收稿日期:2017-05-10 修回日期:2017-07-15 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 陈威,e-mail:chenwei@nankai.edu.cn E-mail:chenwei@nankai.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(973计划)(No.2014CB932001),国家自然科学基金重点项目(No.21237002)和国家杰出青年科学基金(No.21425729)资助

Environmental Transformation of Engineered Carbon Nanomaterials and Its Implications

Xuguang Li, Tingting Du, Jin Liu, Xinlei Liu, Pengkun Ma, Yu Qi, Wei Chen*   

  1. Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
  • Received:2017-05-10 Revised:2017-07-15 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the Ministry of Science and Technology of China (No. 2014CB932001), the National Natural Science Foundation of China (No.21237002) and the National Science Fund for Distinguished Young Scholars (No. 21425729).
近年来,人工碳纳米材料在诸多领域都显示出了广泛的应用前景,而碳纳米材料产量和使用量的大幅增加也使其环境行为与效应受到关注。碳纳米材料进入环境后,可发生复杂的物理、化学和生物转化,导致其表面电荷、疏水性及表面官能团等理化性质发生显著改变。碳纳米材料的环境转化一方面可导致其胶体稳定性、迁移能力和生物效应发生改变,另一方面可显著影响其富集、输送和转化环境污染物的能力,因此,环境转化决定了碳纳米材料的环境行为及其效应。本文总结了近年来有关人工碳纳米材料环境转化及其效应的主要研究成果,探讨了环境转化影响碳纳米材料环境行为与效应的关键机制和构效关系。
Engineered carbon nanomaterials have shown great promise in many applications. With the rapid increase in the production and use of these materials, their environmental behaviors and implications have received much attention. Carbon nanomaterials can undergo significant physical, chemical and biological transformation in the environment, resulting in remarkable changes in their surface charge, hydrophobicity and surface functionality. Environmental transformation of carbon nanomaterials can significantly affect their colloidal stability, transport and toxicity, as well as their capabilities to accumulate/mobilize environmental contaminants and to catalyze environmentally relevant reactions. Thus, environmental transformation largely dictates the environmental behaviors and implications of carbon nanomaterials. This paper summarizes the recent key research findings in the area, with an emphasis on the underlying mechanisms and structure-effect correlations.
Contents
1 Introduction
2 Transformation of engineered carbon nanomaterials
2.1 Physical transformation of carbon nanomaterials
2.2 Chemical transformation of carbon nanomaterials
2.3 Biological transformation of carbon nanomaterials
3 Effects of environmental transformation on environmental processes and implications of carbon nanomaterials
3.1 Environmental transformation affects transport of carbon nanomaterials
3.2 Environmental transformation affects capability of carbon nanoparticles to accumulate and mobilize contaminants
3.3 Environmental transformation affects catalytic efficiency of carbon nanomaterials
4 Conclusion

中图分类号: 

()
[1] Lowry G V, Gregory K B, Apte S C, Lead J R. Environ. Sci. Technol., 2012, 46(13):6893.
[2] Berber S, Kwon Y K, Tomanek D. Phys. Rev. Lett., 2000, 84(20):4613.
[3] Bonard J M, Stöckli T, Maier F, De Heer W A, Châtelain A, Salvetat J P, Forró L. Phys. Rev. Lett., 1998, 81(7):1441.
[4] Fernandez F A, Manchanda R, Mcgoron A J. Appl. Biochem. Biotech., 2011, 165(7):1628.
[5] Yang K, Xing B. Cheminform, 2010, 41(50):5989.
[6] Lu X, Yim W L, Suryanto B H, Zhao C. J. Am. Chem. Soc., 2015, 137(8):2901.
[7] Ghaffarzadeh K. Graphene, 2D Materials and Carbon Nanotubes:Markets, Technologies and Opportunities. 2017-2027, (2017-04-21).[2017-05-06]. http://www.idtechex.com/research/reports/graphene-2d-materials-and-carbon-nanotubes-markets-technologies-and-opportunities-2017-2027-000530.asp.
[8] Wiesner M R, Lowry G V, Alvarez P, Dionysiou D, Biswas P. Environ. Sci. Technol., 2006, 40(14):4336.
[9] Nowack B, Bucheli T D. Environ. Pollut., 2007, 150(1):5.
[10] Pérez S, Farré M L, Barceló D. Trac. Trend. Anal. Chem., 2009, 28(6):820.
[11] Farré M, Sanchís J, Barceló D. Trac. Trend. Anal. Chem., 2011, 30(3):517.
[12] Xia T J, Fortner J D, Zhu D Q, Qi Z C, Chen W. Environ. Sci. Technol., 2015, 49(19):11468.
[13] Akhavan O, Ghaderi E. ACS Nano, 2010, 4(10):5731.
[14] Das S, Singh S, Singh V, Joung D, Dowding J M, Reid D, Anderson J, Zhai L, Khondaker S I, Self W T, Seal S. Part. Part. Syst. Char., 2013, 30(2):148.
[15] Tian F, Zhang Y, Zhang J, Pan C. J. Phys. Chem. C, 2012, 116(13):7515.
[16] Perreault F, Faria A F D, Nejati S, Elimelech M. ACS Nano, 2015, 9(7):7226.
[17] Castrillón R V, Perreault F, Faria A F D, Elimelech M. Environ. Sci. Technol. Lett., 2016, 2(4):112.
[18] Wang F, Wang F, Zhu D, Chen W. Environ. Pollut., 2015, 196:371.
[19] Li X G, Chen W F, Zhang C D, Li Y, Wang F F, Chen W. Environ. Pollut., 2016, 214:341.
[20] Fu H, Zhu D. Environ. Sci. Technol., 2013, 47(9):4204.
[21] Wang F, Duan L, Wang F, Chen W. Nanoimpact, 2016, 1:21.
[22] Chowdhury I, Mansukhani N D, Guiney L M, Hersam M C, Bouchard D. Environ. Sci. Technol., 2015, 49(18):10886.
[23] Chen K L, Elimelech M. Langmuir, 2006, 22(26):10994.
[24] Bouchard D, Zhang W, Powell T, Rattanaudompol U S. Environ. Sci. Technol., 2012, 46(8):4458.
[25] Chen K L, Elimelech M. J. Colloid Interface Sci., 2007, 309(1):126.
[26] Chowdhury I, Duch M C, Mansukhani N D, Hersam M C, Bouchard D. Environ. Sci. Technol., 2013, 47(12):6288.
[27] Lu T, Xia T, Qi Y, Zhang C, Chen W. Environ. Toxicol. Chem., 2017, 36(3):655.
[28] Feng Y, Liu X, Huynh K A, Mccaffery J M, Mao L, Gao S, Chen K L. Environ. Sci. Technol., 2017, 51(12):6821.
[29] Huang G, Guo H, Zhao J, Liu Y, Xing B. Water Res., 2016, 102:313.
[30] Zhao J, Liu F, Wang Z, Cao X, Xing B. Environ. Sci. Technol., 2015, 49(5):2849.
[31] Hou L, Zhu D, Wang X, Wang L, Zhang C, Chen W. Environ. Toxicol. Chem., 2013, 32(3):493.
[32] Wang L, Huang Y, Kan A T, Tomson M B, Chen W. Environ. Sci. Technol., 2012, 46(10):5422.
[33] Wang F, Wang F, Gao G, Chen W. Environ. Toxicol. Chem., 2015, 34(9):1975.
[34] Li Y, Yang N, Du T, Xia T, Zhang C, Chen W. Nanoimpact, 2016, 3:90.
[35] Li Y, Yang N, Du T, Wang X, Chen W. Water Res., 2016, 103:416.
[36] Chowdhury I, Hou W C, Goodwin D, Henderson M, Zepp R G, Bouchard D. Water Res., 2015, 78:37.
[37] Fan Z J, Kai W, Yan J, Wei T, Zhi L J, Feng J, Ren Y M, Song L P, Wei F. ACS Nano, 2011, 5(1):191.
[38] Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Chem. Commun., 2010, 46(7):1112.
[39] Kotchey G P, Allen B L, Vedala H, Yanamala N, Kapralov A A, Tyurina Y Y, Seetharaman J K, Kagan V E, Star A. ACS Nano, 2011, 5(3):2098.
[40] Zhang C, Chen W, Alvarez P J J. Environ. Sci. Technol., 2014, 48(14):7918.
[41] Qi Z, Zhang L, Chen W. Environ. Sci. Proc. Impacts, 2014, 16(10):2268.
[42] Qi Z, Zhang L, Wang F, Hou L, Chen W. Environ. Toxicol. Chem., 2014, 33(5):998.
[43] Lanphere J D, Luth C J, Walker S L. Environ. Sci. Technol., 2013, 47(9):4255.
[44] Franchi A, O'Melia C R. Environ. Sci. Technol., 2003, 37(37):1122.
[45] Hahn M W, O'Meliae C R. Environ. Sci. Technol., 2017, 38(1):210.
[46] Tufenkji N, Elimelech M. Langmuir, 2004, 20(25):10818.
[47] Bradford S A, Simunek J, Bettahar M, Genuchten M T V, Yates S R. Water Resour. Res., 2006, 42(12):12.
[48] Bradford S A, Torkzaban S, Walker S L. Water Res., 2007, 41(13):3012.
[49] Wang D, Zhang W, Hao X, Zhou D. Environ. Sci. Technol., 2013, 47(2):821.
[50] Chen K L, Mylon S E, Elimelech M. Environ. Sci. Technol., 2006, 40(5):1516.
[51] Nguyen T H, Chen K L. Environ. Sci. Technol., 2007, 41(15):5370.
[52] Park S, Lee K S, Bozoklu G, Cai W, Nguyen S B T, Ruoff R S. ACS Nano, 2008, 2(3):572.
[53] Yang K, Wu W, Jing Q, Zhu L. Environ. Sci. Technol., 2008, 42(21):7931.
[54] Ke G, Guan W C, Tang C Y, Hu Z, Guan W J, Zeng D L, Deng F. Chin. Chem. Lett., 2007, 18(3):361.
[55] Gotovac S, Yang C M, Hattori Y, Takahashi K, Kanoh H, Kaneko K. J. Colloid Interface Sci., 2007, 314(1):18.
[56] Chen W, Duan L, Zhu D. Environ. Sci. Technol., 2007, 41(24):8295.
[57] Chen W, Duan L, Wang L, Zhu D. Environ. Sci. Technol., 2008, 42(18):6862.
[58] Woods L M, BǎdDescu S C, Reinecke T L. Phys. Rev. B, 2007, 75(15):155415.
[59] Chen J, Chen W, Zhu D. Environ. Sci. Technol., 2008, 42(19):7225.
[60] Vermisoglou E C, Georgakilas V, Kouvelos E, Pilatos G, Viras K, Romanos G, Kanellopoulos N K. Micropor. Mesopor. Mater., 2007, 99(1/2):98.
[61] Yang K, Xing B. Environ. Pollut., 2007, 145(2):529.
[62] Pan B, Lin D, Mashayekhi H, Xing B. Environ. Sci. Technol., 2008, 42(15):5480.
[63] Hou L, Fortner J D, Wang X, Zhang C, Wang L, Chen W. J. Environ. Sci., 2017, 51:315.
[64] Qi Z, Hou L, Zhu D, Ji R, Chen W. Environ. Sci. Technol., 2014, 48(17):10136.
[65] Wang F, Haftka J J, Sinnige T L, Hermens J L, Chen W. Environ. Pollut., 2014, 186:226.
[66] Cheng X, And A T K, Tomson M B. J. Chem. Eng. Data, 2004, 49(3):675.
[67] Zhang X, Kah M, Jonker M T O, Hofmann T. Environ. Sci. Technol., 2012, 46(13):7166.
[68] Chen G C, Shan X Q, Wang Y S, Wen B, Pei Z G, Xie Y N, Liu T, Pignatello J J. Water Res., 2009, 43(9):2409.
[69] Zhang L, Wang L, Zhang P, Kan A T, Chen W, Tomson M B. Environ. Sci. Technol., 2011, 45(4):1341.
[70] Wang L, Hou L, Wang X, Chen W. Environ. Sci. Proc. Impacts, 2014, 16(6):1282.
[71] Wang L, Fortner J D, Hou L, Zhang C, Kan A T, Tomson M B, Chen W. Environ. Sci. Technol., 2013, 32(2):329.
[72] Grolimund D, Borkovec M, Kurt Barmettler A, Sticher H. Environ. Sci. Technol., 1996, 30(10):3118.
[73] Chen W, Zhu D, Zheng S, Chen W. Environ. Sci. Technol., 2014, 48(7):3856.
[74] Hou W C, Chowdhury I, Jr G D, Henderson W M, Fairbrother D H, Bouchard D, Zepp R G. Environ. Sci. Technol., 2016, 49(6):3435.
[75] Hyung H, Fortner J D, Hughes J B, Kim J H. Environ. Sci. Technol., 2007, 41(1):179.
[76] Zhou X Z, Shu L, Zhao H B, Guo X Y, Wang X L, Tao S, Xing B S. Environ. Sci. Technol., 2012, 46(7):3891.
[77] Hyung H, Kim J H. Environ. Sci. Technol., 2008, 42(12):4416.
[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[4] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[5] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[6] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[7] 任志华, 杨晓溪, 孙振东, 任婧, 桑楠, 周群芳, 江桂斌. 环境内分泌干扰物对雌激素受体表达与转录激活的调控效应及分析技术[J]. 化学进展, 2022, 34(10): 2121-2133.
[8] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[9] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[10] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[11] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[12] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.
[13] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[14] 钟来进, 唐直婕, 胡忻, 练鸿振. 大气颗粒物中有害成分的吸入生物可给性研究[J]. 化学进展, 2021, 33(10): 1766-1779.
[15] 谷麟, 章凯, 俞海祥, 董光霞, 乔兴博, 闻海峰. 污泥碳基催化材料的合成及在水环境中的应用[J]. 化学进展, 2020, 32(9): 1412-1426.