English
新闻公告
More
化学进展 2017, Vol. 29 Issue (7): 740-749 DOI: 10.7536/PC170507 前一篇   后一篇

• 综述 •

化学振荡反应调控的动态可逆智能体系

闫博, 周宏伟*, 解璞, 金洗郎, 马爱洁*, 陈卫星   

  1. 西安工业大学材料与化工学院 西安 710021
  • 收稿日期:2017-05-03 修回日期:2017-06-09 出版日期:2017-07-15 发布日期:2017-06-22
  • 通讯作者: 周宏伟, 马爱洁 E-mail:xatuzhou@163.com;maaijie@xatu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金项目(No.51603164),陕西省自然科学基础研究计划项目(No.2016JQ5036),西安工业大学校长基金项目(No.XAGDXJJ16010)和陕西省高校科协青年人才托举计划资助

Dynamic and Reversible Intelligent Systems Regulated by Chemical Oscillating Reactions

Bo Yan, Hongwei Zhou*, Pu Xie, Xilang Jin, Aijie Ma*, Weixing Chen   

  1. School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
  • Received:2017-05-03 Revised:2017-06-09 Online:2017-07-15 Published:2017-06-22
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51603164),the Natural Science Basic Research Plan in Shaanxi Province of China (No.2016JQ5036),the President Foundation of Xi'an Technological University (No.XAGDXJJ16010) and the Young Talent Fund of University Association for Science and Technology in Shaanxi,China.
动态可逆作用是构筑智能材料体系,实现材料性能可控、可调性的重要工具。但是,多数基于动态可逆作用的智能体系仅能对"开/关"转换的外界刺激因素,如光、热、溶剂、pH等产生响应,不能实现自动调控。化学振荡反应及自振荡高分子材料的发展为新型自调控智能体系的构建提供了重要的思路。本文结合自调控智能体系的最新研究进展,介绍化学振荡反应调控的动态可逆智能体系(DRIS),包括利用动态共价键、主-客体作用、配位作用、离子作用、分子间作用等动态可逆作用构筑的纳米粒子自动聚集/分散体系、两亲性分子自组装/解组装体系、宏观凝胶自组装/解组装体系、自动分子器件、自动荧光振荡体系等。最后,对化学振荡反应调控的动态可逆智能体系的研究与发展进行展望。
Dynamic and reversible interaction is one of important tools for constructing intelligent material systems with controllability and adjustability. However, most of the intelligent systems based on dynamic and reversible interactions only respond to "on/off" transition of external stimuli, including light, heat, solvent, pH, etc., instead of automatic regulation. The development of chemical oscillating reactions and self-oscillating polymer materials provides an important idea for the construction of self-regulated intelligent systems. We introduce dynamic and reversible intelligent systems (DRIS) regulated by chemical oscillating reactions, including autonomous aggregation/disaggregation nanoparticle systems, autonomous assembly/disassembly amphiphilic molecule systems, autonomous assembly/disassembly hydrogel systems, autonomous molecular shuttle systems and autonomous fluorescent oscillation systems, which are constructed base on dynamic and reversible interactions, such as dynamic covalent bonds, host-guest interactions, coordination interactions, ionic interactions and intermolecular interactions. Finally, we prospect the future investigation and development of DRIS regulated by chemical oscillating reactions.
Contents
1 Introduction
2 Chemical oscillating reactions
3 General construction mechanism for DRIS
4 DRIS based on different dynamic and reversible interactions
4.1 DRIS based on dynamic covalent bonds
4.2 DRIS based on host-guest interactions
4.3 DRIS based on coordination interactions
4.4 DRIS based on ionic interactions
4.5 DRIS based on intermolecular interactions
5 Conclusion and outlook

中图分类号: 

()
[1] Clayden J. Nat. Nano., 2017, DOI:10.1038/nnano.2017.19.
[2] Lehn J M. Chem. Soc. Rev., 2017, DOI:10.1039/C7CS00115K.
[3] Kolesnichenko I V, Anslyn E V. Chem. Soc. Rev., 2017, DOI:10.1039/C7CS00078B.
[4] Liu Y, Lehn J M, Hirsch A K H. Acc. Chem. Res., 2017, 50:376.
[5] Mondal M, Hirsch A K H. Chem. Soc. Rev., 2015, 44:2455.
[6] Jin Y H, Yu C, Denman R J, Zhang W. Chem. Soc. Rev., 2013, 42:6634.
[7] Grubbs R B. Nat. Mater., 2007, 6:553.
[8] Boal A K, Ilhan F, DeRouchey J E, Thurn-Albrecht T, Russell T P, Rotello V M. Nature, 2000, 404:746.
[9] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40:94.
[10] Wang C, Wang Z, Zhang X. Acc. Chem. Res., 2012, 45:608.
[11] Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Nat. Chem., 2011, 3:34.
[12] Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Nature Communications, 2012, 3:831.
[13] Heinzmann C, Weder C, de Espinosa L M. Chem. Soc. Rev., 2016, 45:342.
[14] Yang L, Tan X, Wang Z, Zhang X. Chem. Rev., 2015, 115:7196.
[15] Burnworth M, Tang L, Kumpfer J R, Duncan A J, Beyer F L, Fiore G L, Rowan S J, Weder C. Nature, 2011, 472:334.
[16] Aida T, Meijer E W, Stupp S I. Science, 2012, 335:813.
[17] Fiore G L, Rowan S J, Weder C. Chem. Soc. Rev., 2013, 42:7278.
[18] Yang Y, Urban M W. Chem. Soc. Rev., 2013, 42:7446.
[19] Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K, Auernhammer G K, Berger R, Butt H J, Wu S. Nat. Chem., 2017, 9:145.
[20] Colquhoun H M. Nat. Chem., 2012, 4:435.
[21] Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Nature, 2008, 451:977.
[22] Chen Y, Kushner A M, Williams G A, Guan Z. Nat. Chem., 2012, 4:467.
[23] Zhou H, Zhang M, Cao J, Yan B, Yang W, Jin X, Ma A, Chen W, Ding X, Zhang G. Macromol. Mater. & Eng., 2016, 302:1600352.
[24] Zhao Q, Zou W, Luo Y, Xie T. Sci. Adv., 2016, 2:e1501297.
[25] Xie T. Nature, 2010, 464:267.
[26] Luo Y, Guo Y, Gao X, Li B G, Xie T. Adv. Mater., 2013, 25:743.
[27] Lendlein A, Jiang H, Junger O, Langer R. Nature, 2005, 434:879.
[28] Behl M, Razzaq M Y, Lendlein A. Adv. Mater., 2010, 22:3388.
[29] Habault D, Zhang H, Zhao Y. Chem. Soc. Rev., 2013, 42:7244.
[30] Joachim C, Gimzewski J K, Aviram A. Nature, 2000, 408:541.
[31] Brouwer A M, Frochot C, Gatti F G, Leigh D A, Mottier L C, Paolucci F, Roffia S, Wurpel G W H. Science, 2001, 291:2124.
[32] Kassem S, van Leeuwen T, Lubbe A S, Wilson M R, Feringa B L, Leigh D A. Chem. Soc. Rev., 2017, 46(9):2592.
[33] Petrov V, Ouyang Q, Swinney H L. Nature, 1997, 388:655.
[34] Petrov V, Gaspar V, Masere J, Showalter K. Nature, 1993, 361:240.
[35] Noyes R M, Field R J, Koros E. J. Am. Chem. Soc., 1972, 94:1394.
[36] Sharma K R, Noyes R M. J. Am. Chem. Soc., 1976, 98:4345.
[37] Ivanovic A Z, Cupic Z D, Jankovic M M, Kolar-Anic L Z, Anic S R. Phys. Chem., 2008, 10:5848.
[38] Sharma K R, Noyes R M. J. Am. Chem. Soc., 1975, 97:202.
[39] Schmitz G. Phys. Chem., 2011, 13:7071.
[40] Kepper P D, Epstein I R. J. Am. Chem. Soc., 1982, 104:49.
[41] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104:38.
[42] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104:42.
[43] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104:45.
[44] Poros E, Horvath V, Kurin-Csorgei K, Epstein I R, Orban M. J. Am. Chem. Soc., 2011, 133:7174.
[45] Pesek O, Schreiberova L, Schreiber I. Phys. Chem. Chem. Phys., 2011, 13:9849.
[46] Yoshida R, Uesusuki Y. Biomacromolecules, 2005, 6:2923.
[47] Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118:5134.
[48] Yoshida R. Adv. Mater., 2010, 22:3463.
[49] Yoshida R, Ichijo H, Hakuta T, Yamaguchi T. Macromol. Rapid Commun., 1995, 16:305.
[50] Yoshida R, Sakai T, Ito S, Yamaguchi T. J. Am. Chem. Soc., 2002, 124:8095.
[51] Hara Y, Sakai T, Maeda S, Hashimoto S, Yoshida R. J. Phys. Chem. B, 2005, 109:23316.
[52] Ueda M, Hara Y, Sakai T, Yoshida R, Takai M, Ito Y. J. Polym. Sci. Pt. B-Polym. Phys., 2007, 45:1578.
[53] Suzuki D, Sakai T, Yoshida R. Angew. Chem. Int. Ed., 2008, 47:917.
[54] Suzuki D, Taniguchi H, Yoshida R. J. Am. Chem. Soc., 2009, 131:12058.
[55] Ueki T, Shibayama M, Yoshida R. Chem. Commun., 2013, 49:6947.
[56] Tamate R, Ueki T, Shibayama M, Yoshida R. Angew. Chem. Int. Ed., 2014, 53:11248.
[57] Lagzi I, Kowalczyk B, Wang D W, Grzybowski B A. Angew. Chem. Int. Ed., 2010, 49:8616.
[58] 周宏伟(Zhou H W), 梁恩湘(Liang E X), 郑朝晖(Zheng Z H), 丁小斌(Ding X B), 彭宇行(Peng Y X). 化学进展(Prog. Chem.), 2011, 23:2368.
[59] Ren J, Zhang X Y, Gao J Z, Yang W. Cent. Eur. J. Chem., 2013, 11:1023.
[60] Homma K, Masuda T, Akimoto A M, Nagase K, Itoga K, Okano T, Yoshida R. Small, 2017, 13:170041.
[61] Zhou H W, Zheng Z H, Wang Q G, Xu G H, Li J, Ding X B. RSC Adv., 2015, 5:13555.
[62] Maeda T, Otsuka H, Takahara A. Prog. Polym. Sci., 2009, 34:581.
[63] Rowan S J, Cantrill S J, Cousins G R, Sanders J K, Stoddart J F. Angew. Chem. Int. Ed., 2002, 41:898.
[64] Meyer C D, Joiner C S, Stoddart J F. Chem. Soc. Rev., 2007, 36:1705.
[65] Bhat V T, Caniard A M, Luksch T, Brenk R, Campopiano D J, Greaney M F. Nature Chem., 2010, 2:490.
[66] Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Angew. Chem., 2011, 123:1698.
[67] Postma A, Davis T P, Moad G, O'Shea M S. Macromolecules, 2005, 38:5371.
[68] Moad G, Chong Y K, Postma A, Rizzardo E, Thang S H. Polymer, 2005, 46:8458.
[69] Harrisson S. Macromolecules, 2009, 42:897.
[70] Xu G, Li J, Deng J, Yin L, Zheng Z, Ding X. RSC Adv., 2015, 5:106294.
[71] Xu G, Zhou H, Li J, Yin L, Zheng Z, Ding X. Polym. Chem., 2016, 7:3211.
[72] Liang E X, Zhou H W, Ding X B, Zheng Z H, Peng Y X. Chem. Commun., 2013, 49:5384.
[73] Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Langmuir, 2011, 27:13790.
[74] Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. ACS Macro Letters, 2012, 1:1083.
[75] Kobayashi Y, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. Sci. Rep., 2013, 3:142.
[76] Yang H, Yuan B, Zhang X, Scherman O A. Acc. Chem. Res., 2014, 47:2106.
[77] Schneider H J, Yatsimirsky A K. Chem. Soc. Rev., 2008, 37:263.
[78] Zhou Y, Wang D, Huang S, Auernhammer G, He Y, Butt H J, Wu S. Chem. Commun., 2015, 51:2725.
[79] 许国贺(Xu G H), 李杰(Li J), 邓瑾妮(Deng J N), 殷绿(Yin L), 郑朝晖(Zheng Z H), 丁小斌(Ding X B). 化学进展(Prog. Chem.), 2015, 27:1732.
[80] Stepanow S, Lingenfelder M, Dmitriev A, Spillmann H, Delvigne E, Lin N, Deng X, Cai C, Barth J V, Kern K. Nat. Mater., 2004, 3:229.
[81] Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F. Angew. Chem., 2012, 124:7117.
[82] Wang D S, Wagner M, Butt H J, Wu S. Soft Matter, 2015, 11:7656.
[83] Crowley J D, Goldup S M, Lee A L, Leigh D A, McBurney R T. Chem. Soc. Rev., 2009, 38:1530.
[84] Buyukcakir O, Yasar F T, Bozdemir O A, Icli B, Akkaya E U. Org. Lett., 2013, 15:1012.
[85] Zhou H W, Wang Y R, Zheng Z H, Ding X B, Peng Y X. Chem. Commun., 2014, 50:6372.
[86] Hofmeier H, Schubert U S. Chem. Soc. Rev., 2004, 33:373.
[87] Schubert U S, Eschbaumer C. Angew. Chem. Int. Ed., 2002, 41:2892.
[88] Winter A, Hager M D, Newkome G R, Schubert U S. Adv. Mater., 2011, 23:5728.
[89] Norsten T B, Frankamp B L, Rotello V M. Nano Lett., 2002, 2:1345.
[90] Ueki T, Yoshida R. Phys. Chem. Chem. Phys., 2014, 16:10388.
[91] Lohmeijer B G G, Schubert U S. Angew. Chem. Int. Ed., 2002, 41:3825.
[92] Fustin C A, Guillet P, Schubert U S, Gohy J F. Adv. Mater., 2007, 19:1665.
[93] Delgado J, Zhang Y, Xu B, Epstein I R. J. Phys. Chem. A, 2011, 115:2208.
[94] Zhou H W, Yang Y, Xu G H, Chen W X, Zhang W Z, Wang Q Q, Zheng Z H, Ding X B. J. Polym. Sci. Pol. Chem., 2015, 53:2214.
[95] Ueno T, Bundo K, Akagi Y, Sakai T, Yoshida R. Soft Matter, 2010, 6:6072.
[96] Ueki T, Takasaki Y, Bundo K, Ueno T, Sakai T, Akagi Y, Yoshida R. Soft Matter, 2014, 10:1349.
[97] 周宏伟(Zhou H W), 丁小斌(Ding X B). 化学进展(Prog. Chem.), 2016, 28:111.
[98] Zhou H, Liang E, Ding X, Zheng Z, Peng Y. Chem. Commun., 2012, 48:10553.
[99] Zhou H W, Liang E X, Pan Y, Ding X B, Zheng Z H, Peng Y X. RSC Adv., 2013, 3:2182.
[100] Lin P, Ma S H, Wang X L, Zhou F. Adv. Mater., 2015, 27:2054.
[101] Wei Z, He J, Liang T, Oh H, Athas J, Tong Z, Wang C, Nie Z. Polym. Chem., 2013, 4:4601.
[102] Liang Y, Wu D, Feng X, Müllen K. Adv. Mater., 2009, 21:1679.
[103] Zhou H, Zhang M, Cao J, Yan B, Yang W, Jin X, Ma A, Chen W, Ding X, Zhang G, Luo C. Macromol. Mater. Eng., 2017, 302, 1600352.
[104] Zhang Y, Zhou N, Li N, Sun M G, Kim D, Fraden S, Epstein I R, Xu B. J. Am. Chem. Soc., 2014, 136:7341.
[105] Zhang Y, Zhou N, Akella S, Kuang Y, Kim D, Schwartz A, Bezpalko M, Foxman B M, Fraden S, Epstein I R, Xu B. Angew. Chem. Int. Ed., 2013, 52:11494.
[106] Smith M L, Slone C, Heitfeld K, Vaia R A. Adv. Funct. Mater., 2013, 23:2835.
[107] Nabika H, Oikawa T, Iwasaki K, Murakoshi K, Unoura K. J. Phys. Chem. C, 2012, 116:6153.
[108] Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Nat. Commun., 2012, 3:603.
[109] Onoda M, Ueki T, Shibayama M, Yoshida R. Sci. Rep., 2015, 5:15792.
[110] Lagzi I, Wang D W, Kowalczyk B, Grzybowski B A. Langmuir, 2010, 26:13770.
[111] Ueki T, Onoda M, Tamate R, Shibayama M, Yoshida R. Chaos, 2015, 25:064605.
[112] Tamate R, Ueki T, Yoshida R. Adv. Mater., 2015, 27:837.
[113] Zhou H, Ding X, Zheng Z, Peng Y. Soft Matter, 2013, 9:4956.
[114] Yashin V V, Levitan S P, Balazs A C. Sci. Rep., 2015, 5:11577.
[115] Dayal P, Kuksenok O, Balazs A C. Macromolecules, 2014, 47:3231.
[116] Dayal P, Kuksenok O, Balazs A C. PNAS, 2013, 110:431.
[117] Yashin V V, Kuksenok O, Balazs A C. Prog. Polym. Sci., 2010, 35:155.
[118] Yashin V V, Balazs A C. Macromolecules, 2006, 39:2024.
[119] Yashin Victor V, Balazs Anna C. Science, 2006, 314:798.
[120] Yashin V V, Kuksenok O, Balazs A C. J. Phys. Chem. B, 2010, 114:6316.
[1] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[2] 黄文忠, 占田广, 林沨, 赵新. 基于主-客体作用的超分子聚合物的构筑和调控进展[J]. 化学进展, 2016, 28(2/3): 165-183.
[3] 傅骏青, 王晓艳, 李金花, 陈令新. 重金属离子印迹技术[J]. 化学进展, 2016, 28(1): 83-90.
[4] 黄国保, 蒋伟. 有机模板协助构建的动态共价大环[J]. 化学进展, 2015, 27(6): 744-754.
[5] 王晓钟,陈英奇,陈新志,蒋锡夔,黎占亭. 有机分子识别和聚集体组装中的非共价键协同作用*[J]. 化学进展, 2005, 17(03): 451-458.