English
新闻公告
More
化学进展 2017, Vol. 29 Issue (8): 833-845 DOI: 10.7536/PC170501 前一篇   后一篇

• 综述 •

石墨烯基分离膜研究进展

万武波, 纪冉, 何锋*   

  1. 浙江工业大学环境学院 杭州 310014
  • 收稿日期:2017-05-02 修回日期:2017-07-11 出版日期:2017-08-15 发布日期:2017-07-24
  • 通讯作者: 何锋,E-mail:fenghe@zjut.edu.cn E-mail:fenghe@zjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51308312)和浙江省自然科学基金项目(No.LQ16E020007)资助

Recent Advances in Graphene Based Separation Membranes

Feng He, Ran Ji, Feng He*   

  1. College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2017-05-02 Revised:2017-07-11 Online:2017-08-15 Published:2017-07-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51308312) and Zhejiang Provincial Natural Science Foundation (No. LQ16E020007).
石墨烯为单层平面碳原子以sp2杂化方式紧密结合在一起形成的二维原子晶体,可作为基本材料构筑各种不同性能的宏观二维分离膜,是目前膜分离研究领域的一颗崭亮新星。本文重点介绍了各种石墨烯基分离膜的制备方法,并对其在水处理、气体分离、海水淡化等方向的应用研究进行评述。相比于传统高分子基分离膜,石墨烯分离膜在抗污染性能、膜通量以及选择性方面均有提升。除此之外,本文对基于其他新兴二维材料——氮化硼(BN)、二硫化钼(MoS2)以及二硫化钨(WS2)等的分离膜研究也进行了前瞻性讨论。最后,对石墨烯基膜的应用机遇和挑战作出评价,同时对其发展前景作出展望。
Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a two-dimensional crystal. As the building block for various macroscopic membranes, graphene has been known as a rising star in the area of membrane separation. The preparation and application of graphene based separation membrane are discussed in this review. Particular emphasis is directed to the wide application of graphene based membrane in the field of water treatment, gas separation, desalination and so on. Compared to traditional polymer membrane, graphene based separation membrane has the advantage of anti-fouling, high flux and good selectivity. Moreover, the application of other emerging 2D materials such as BN, MoS2 and WS2 in separation technology is also discussed. Finally, the future opportunities and challenges for the wide application of graphene based membrane are also discussed along with perspectives for future research in these fields.
Contents
1 Introduction
2 The preparation of graphene based membranes
2.1 Vacuum filtration method
2.2 Spin coating/spraying method
2.3 Layer-by-layer self-assembly method
2.4 Blending method
3 The application of graphene based membranes
3.1 Gas separation
3.2 CO2 capture
3.3 Water purification
3.4 Desalination
3.5 Isotope removal
4 Membrane modification and performance improvement
4.1 Antifouling properties
4.2 Flux increase
4.3 Balance between the selectivity and flux
5 Separation membranes based on other emerging two-dimensional materials
6 Conclusion

中图分类号: 

()
[1] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[2] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22:3906.
[3] Liu G, Jin W, Xu N. Chem. Soc. Rev., 2015, 44:5016.
[4] Park J, Bazylewski P, Fanchini G. Nanoscale, 2016, 8:9563.
[5] Sun P, Wang K, Zhu H. Adv. Mater., 2016, 28:2287.
[6] Yoo B M, Shin J E, Lee H D, Park H B. Curr. Opin. Chem. Eng., 2017, 16:39.
[7] Huang L, Zhang M, Li C, Shi G. J. Phys. Chem. Lett., 2015, 6:2806.
[8] Sun C, Wen B, Bai B. Sci. Bull., 2015, 60:1807.
[9] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 448:457.
[10] Qiu L, Zhang X, Yang W, Wang Y, Simon G P, Li D. Chem. Commun., 2011, 47:5810.
[11] Huang H, Mao Y, Ying Y, Liu Y, Sun L, Peng X. Chem. Commun., 2013, 49:5963.
[12] Han Y, Xu Z, Gao C. Adv. Funct. Mater., 2013, 23:3693.
[13] Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. ACS Nano, 2008, 2:463.
[14] Lue S J, Pai Y L, Shih C M, Wu M C, Lai S M. J. Membr. Sci., 2015, 493:212.
[15] Kim H W, Yoon H W, Yoon S M, Yoo B M, Ahn B K, Cho Y H, Shin H J, Yang H, Paik U, Kwon S, Choi J Y, Park H B. Science, 2013, 342:91.
[16] Gilje S, Han S, Wang M, Wang K L, Kaner R B. Nano Lett., 2007, 7:3394.
[17] Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Science, 2012, 335:442.
[18] Hu M, Mi B. Environ. Sci. Technol., 2013, 47:3715.
[19] Zhao L, Yuan B, Geng Y, Yu C, Kim N H, Lee J H, Li P. Compos. Part A-Appl. Sci. Manufact., 2015, 78:60.
[20] 万武波(Wan W B), 赵宗彬(Zhao Z B), 范彦如(Fan Y R), 胡涵(Hu H), 周泉(Zhou Q), 邱介山(Qiu J S). 化学进展(Progress in Chemistry), 2011, 23:1883.
[21] Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y. Desalination, 2012, 299:50.
[22] Fryczkowska B, Sieradzka M, Sarna E, Fryczkowski R, Janicki J. J. Appl. Polym. Sci., 2015, 132:42789.
[23] Ouyang G, Hussain A, Li J B, Li D X. RSC Adv., 2015, 5:70448.
[24] Jiang D, Cooper V R, Dai S. Nano Lett., 2009, 9:4019.
[25] Du H, Li J, Zhang J, Su G, Li X, Zhao Y. J. Phys. Chem. C, 2011, 115:23261.
[26] Koenig S P, Wang L D, Pellegrino J, Bunch J S. Nat. Nanotechnol., 2012, 7:728.
[27] Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli C A, Passerone D. Small, 2010, 6:2266.
[28] Berean K J, Ou J Z, Nour M, Field M R, Alsaif M, Wang Y C, Ramanathan R, Bansal V, Kentish S, Doherty C M, Hill A J, McSweeney C, Kaner R B, Kalantar-zadeh K. J. Phys. Chem. C, 2015, 119:13700.
[29] Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C, Park H G. Science, 2014, 344:289.
[30] Kalaitzidou K, Fukushima H, Drzal L T. Carbon, 2007, 45:1446.
[31] Raman R K S, Tiwari A. JOM, 2014, 66:637.
[32] Shen J, Liu G, Huang K, Jin W, Lee K R, Xu N. Angew. Chem. Int. Ed., 2015, 54:578.
[33] Hu Y, Wei J, Liang Y, Zhang H, Zhang X, Shen W, Wang H. Angew. Chem. Int. Ed., 2016, 55:2048.
[34] Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. ACS Nano, 2016, 10:3398.
[35] Karunakaran M, Villalobos L F, Kumar M, Shevate R, Akhtar F H, Peinemann K V. J. Mater. Chem. A, 2017, 5:649.
[36] Karunakaran M, Shevate R, Kumar M, Peinemann K V. Chem. Commun., 2015, 51:14187.
[37] Shen Y, Wang H, Liu J, Zhang Y. ACS Sustain. Chem. Eng., 2015, 3:1819.
[38] Cheng X Q, Zhang C, Wang Z X, Shao L. J. Membr. Sci., 2016, 499:326.
[39] Xu C, Cui A, Xu Y, Fu X. Carbon, 2013, 62:465.
[40] Kanchanapally R, Nellore B P V, Sinha S S, Pedraza F, Jones S J, Pramanik A, Chavva S R, Tchounwou C, Shi Y, Vangara A, Sardar D, Ray P C. RSC Adv., 2015, 5:18881.
[41] Zhang Y, Zhang S, Chung T S. Environ. Sci. Technol., 2015, 49:10235.
[42] Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Science, 2014, 343:752.
[43] Sun P, Zheng F, Zhu M, Song Z, Wang K, Zhong M, Wu D, Little R B, Xu Z, Zhu H. ACS Nano, 2014, 8:850.
[44] Abraham J, Vasu K S, Williams C D, Gopinadhan K, Su Y, Cherian C T, Dix J, Prestat E, Haigh S J, Grigorieva I V, Carbone P, Geim A K, Nair R R. Nat. Nanotechnol., 2017, 21:1748.
[45] Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. Angew. Chem., 2014, 53:6929.
[46] Boukhvalov D W, Katsnelson M I, Son Y W. Nano Lett., 2013, 13:3930.
[47] Wei N, Peng X, Xu Z. ACS Appl. Mater. Interfaces, 2014, 6:5877.
[48] Huang L, Li Y, Zhou Q, Yuan W, Shi G. Adv. Mater., 2015, 27:3797.
[49] Sheath P, Majumder M. Phil. Trans. R. Soc. A, 2016, 374:13.
[50] Liu H, Wang H, Zhang X. Adv. Mater., 2015, 27:249.
[51] Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H. ACS Nano, 2013, 7:428.
[52] Cohen-Tanugi D, Grossman J C. Nano Lett., 2012, 12:3602.
[53] Nicolai A, Sumpter B G, Meunier V. Phys. Chem. Chem. Phys., 2014, 16:8646.
[54] He Z, Zhou J, Lu X, Corry B. ACS Nano, 2013, 7:10148.
[55] Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Nat. Nanotechnol., 2015, 10:459.
[56] Mi B. Science, 2014, 343:740.
[57] Chae H R, Lee J, Lee C H, Kim I C, Park P K. J. Membr. Sci., 2015, 483:128.
[58] Lee J, Jang J H, Chae H R, Lee S H, Lee C H, Park P K, Won Y J, Kim I C. J. Mater. Chem. A, 2015, 3:22053.
[59] Feng B, Xu K, Huang A. RSC Adv., 2017, 7:2211.
[60] Yang E, Kim C M, Song J H, Ki H, Ham M H, Kim I S. Carbon, 2017, 117:293.
[61] Liang B, Zhan W, Qi G, Lin S, Nan Q, Liu Y, Cao B, Pan K. J. Mater. Chem. A, 2015, 3:5140.
[62] Chen X, Liu G, Zhang H, Fan Y. Chinese J. Chem. Eng., 2015, 23:1102.
[63] Zhao J, Zhu Y, Pan F, He G, Fang C, Cao K, Xing R, Jiang Z. J. Membr. Sci., 2015, 487:162.
[64] Choi W, Choi J, Bang J, Lee J H. ACS Appl. Mater. Interfaces, 2013, 5:12510.
[65] Perreault F, Tousley M E, Elimelech M. Environ. Sci. Technol. Lett., 2013, 1:71.
[66] Gao Y, Hu M, Mi B. J. Membr. Sci., 2014, 455:349.
[67] Yuan Y, Gao X, Wei Y, Wang X, Wang J, Zhang Y, Gao C. Desalination, 2017, 405:29.
[68] Ayyaru S, Ahn Y H. J. Membr. Sci., 2017, 525:210.
[69] Koolivand H, Sharif A, Kashani M R, Karimi M, Salooki M K, Semsarzadeh M A. J. Polym. Res., 2014, 21:599.
[70] Chen L, Lu S S, Wu S, Zhou J, Wang X M. J. Mol. Liq., 2015, 209:397.
[71] Lozada-Hidalgo M, Hu S, Marshall O, Mishchenko A, Grigorenko A N, Dryfe R A W, Radha B, Grigorieva I V, Geim A K. Science, 2016, 351:68.
[72] Akhavan O, Ghaderi E. ACS Nano, 2010, 4:5731.
[73] Huang Y, Li H, Wang L, Qiao Y, Tang C, Jung C, Yoon Y, Li S, Yu M. Adv. Mater. Interfaces, 2015, 2:1400433.
[74] Xie Q L, Zhang S S, Xiao Z Y, Hu X F, Hong Z, Yi R Z, Shao W Y, Wang Q Q. RSC Adv., 2017, 7:18755.
[75] Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X. Nat. Commun., 2013, 4:2979.
[76] Wang W, Eftekhari E, Zhu G, Zhang X, Yan Z, Li Q. Chem. Commun., 2014, 50:13089.
[77] Gao S J, Qin H L, Liu P P, Jin J. J. Mater. Chem. A, 2015, 3:6649.
[78] Han Y, Jiang Y, Gao C. ACS Appl. Mater. Interfaces, 2015, 7:8147.
[79] Goh K, Jiang W, Karahan H E, Zhai S, Wei L, Yu D, Fane A G, Wang R, Chen Y. Adv. Funct. Mater., 2015, 25:7348.
[80] Yang D, Yang S, Jiang Z, Yu S, Zhang J, Pan F, Cao X, Wang B, Yang J. J. Membr. Sci., 2015, 487:152.
[81] Zheng Z, Grünker R, Feng X. Adv. Mater., 2016, 28:6529.
[82] Liu G, Jin W, Xu N. Angew. Chem. Int. Ed., 2016, 55:13384.
[83] Yue Q, Shao Z Z, Chang S L, Li J B. Nanoscale Res. Lett., 2013, 8:1.
[84] Berean K J, Ou J Z, Daeneke T, Carey B J, Nguyen E P, Wang Y C, Russo S P, Kaner R B, Kalantar-zadeh K. Small, 2015, 11:5035.
[85] Sun L W, Huang H B, Peng X S. Chem. Commun., 2013, 49:10718.
[86] Sun L W, Ying Y L, Huang H B, Song Z G, Mao Y Y, Xu Z P, Peng X S. ACS Nano, 2014, 8:6304.
[87] Ren C E, Hatzell K B, Alhabeb M, Ling Z, Mahmoud K A, Gogotsi Y. J. Phys. Chem. Lett., 2015, 6:4026.
[88] Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. Angew. Chem. Int. Ed., 2017, 56:1825.
[89] Rasool K, Mahmoud K A, Johnson D J, Helal M, Berdiyorov G R, Gogotsi Y. Sci. Rep., 2017, 7:1598.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[5] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[6] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[7] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[8] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[13] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[14] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[15] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
阅读次数
全文


摘要

石墨烯基分离膜研究进展