English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1042-1052 DOI: 10.7536/PC170444 前一篇   后一篇

• 综述 •

溶解态黑碳的环境过程研究

魏晨辉1, 付翯云1*, 瞿晓磊1*, 朱东强1,2   

  1. 1. 南京大学环境学院 污染控制与资源化研究国家重点实验室 南京 210046;
    2. 北京大学城市与环境学院 北京 100871
  • 收稿日期:2017-04-27 修回日期:2017-07-20 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 付翯云,e-mail:heyunfu@nju.edu.cn;瞿晓磊,e-mail:xiaoleiqu@nju.edu.cn E-mail:heyunfu@nju.edu.cn;xiaoleiqu@nju.edu.cn
  • 基金资助:
    国家重点基础研究发展计划(No.2014CB441103)和国家自然科学基金项目(No.21407073,21622703)资助

Environmental Processes of Dissolved Black Carbon

Chenhui Wei1, Heyun Fu1*, Xiaolei Qu1*, Dongqiang Zhu1,2   

  1. 1. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China;
    2. School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
  • Received:2017-04-27 Revised:2017-07-20 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Key Basic Research Program of China (No. 2014CB441103) and the National Natural Science Foundation of China (No. 21407073, 21622703).
溶解态黑碳是黑碳连续体中可溶解于水的组分,是连接陆地土壤和海洋底泥两个主要黑碳库的关键纽带。溶解态黑碳也是天然可溶性有机质的重要组分,富含芳香微域结构和羧基、羟基、羰基等功能性官能团,具有较高的反应活性,可介导污染物在环境中的分配和转化过程。因此,研究溶解态黑碳的环境地球化学行为对研究全球碳循环以及污染物的环境归趋和效应都具有重要意义,已成为了相关领域的前沿和热点。本文综述了十余年以来溶解态黑碳在环境过程方面的研究进展,重点阐述了溶解态黑碳的定性、定量分析方法,在环境中的含量和空间分布、结构特征、环境转化过程,以及其对污染物吸附、氧化还原转化、光转化等环境行为的影响,并在此基础上对溶解态黑碳的未来研究方向进行了展望。
Dissolved black carbon (DBC) is the water-soluble fraction of the black carbon continuum, being the key flux that connects two major black carbon pools:the soils and the ocean sediments. DBC is also an important component of the dissolved organic matter pool. It has rich aromatic clusters and oxygen-containing functional groups including carboxyl, hydroxyl, and carbonyl groups. DBC plays an important role in the sorption and environmental transformation of pollutants. Thus, research on the biogeochemical behavior of DBC is key to the understanding of the global carbon cycle as well as the environmental fate and impact of pollutants. The present paper reviews the previous studies on the environmental processes of DBC. The discussion covers the qualitative and quantitative analytical methods of DBC, its spatiotemporal distribution, its structural characteristics and environmental transformation, as well as its impacts on the sorption, redox transformation and photo transformation of pollutants in the environments. Then the new research directions addressing current knowledge gaps are proposed.
Contents
1 Introduction
2 Analytical methods and the spatiotemporal distribution of DBC
2.1 Qualitative and quantitative analytical methods for DBC
2.2 Spatiotemporal distribution of DBC
3 Structural characteristics and environmental transformation of DBC
3.1 Structural characteristics of DBC
3.2 Environmental transformation of DBC
4 Impacts of DBC on the environmental behavior of pollutants
4.1 Impacts of DBC on the sorption behavior of pollutants
4.2 Impacts of DBC on the redox reactions of pollutants
4.3 Impacts of DBC on the photoconversion reactions of pollutants
5 Conclusion

中图分类号: 

()
[1] Masiello C A. Mar. Chem., 2004, 92:201.
[2] Goldberg E D. Black Carbon in the Environment:Properties and Distribution. NY:John Wiley and Sons, 1985.
[3] Cornelissen G, Gustafsson O, Bucheli T D, Jonker M T O, Koelmans A A, Van Noort P C M. Environ. Sci. Technol., 2005, 39:6881.
[4] Jaffé R, Ding Y, Niggemann J, Vahatalo A V, Stubbins A, Spencer R G M, Campbell J, Dittmar T. Science, 2013, 340:345.
[5] Masiello C A, Druffel E R M. Science, 1998, 280:1911.
[6] Kuhlbusch T A J. Science, 1998, 280:1903.
[7] Crutzen P J, Andreae M O. Science, 1990, 250:1669.
[8] Schmidt M W I. Nature, 2004, 427:305.
[9] Polubesova T, Chefetz B. Crit. Rev. Environ. Sci. Technol., 2013, 44:223.
[10] Mopper K, Stubbins A, Ritchie J D, Bialk H M, Hatcher P G. Chem. Rev., 2007, 107:419.
[11] 黄国培(Huang G P), 陈颖军(Chen Y J), 田崇国(Tian C G), 唐建辉(Tang J H), 潘晓辉(Pan X H), 王艳(Wang Y), 李军(Li J). 地球科学进展(Advances in Earth Science), 2012, 27:1326.
[12] Kim S W, Kaplan L A, Benner R, Hatcher P G. Mar. Chem., 2004, 92:225.
[13] Glaser B, Haumaier L, Guggenberger G, Zech W. Org. Geochem., 1998, 29:811.
[14] Dittmar T. Org. Geochem., 2008, 39:396.
[15] 黄国培(Huang G P), 陈颖军(Chen Y J), 田崇国(Tian C G), 刘莺(Liu Y). 色谱(Chinese Journal of Chromatography), 2016, 34:306.
[16] Huang G P, Chen Y J, Tian C G, Tang J H, Zhang H, Luo Y M, Li J, Zhang G. J. Coastal Res., 2016, 74:214.
[17] 海婷婷(Hai T T), 陈颖军(Chen Y J), 王艳(Wang Y), 田崇国(Tian C G), 唐建辉(Tang J H), 潘晓辉(Pan X H), 李军(Li H). 环境科学与技术(Environmental Science and Technology), 2013, 12:153.
[18] 赵美训(Zhao M X), 于蒙(Yu M), 张海龙(Zhang H L), 陶舒琴(Tao S Q). 海洋学报(Acta Oceanologica Sinica), 2014, 36:1.
[19] Coppola A I, Walker B D, Druffel E R M. Mar. Chem., 2015, 177:697.
[20] Ziolkowski L A, Druffel E R M. Geophys. Res. Lett., 2010, 37:1.
[21] Wang X, Xu C, Druffel E M, Xue Y, Qi Y. Global Biogeochem. Cy., 2006, 30:1778.
[22] Dittmar T, Paeng J. Nat. Geosci., 2009, 2:175.
[23] Stubbins A, Niggemann J, Dittmar T. Biogeosciences, 2012, 9:1661.
[24] Ding Y, Yamashita Y, Jones J, Jaffé R. Biogeochemistry, 2015, 123:15.
[25] Xu C L, Xue Y J, Qi Y Z, Wang X C. Estuar. Coast., 2016, 39:1617.
[26] Mannino A, Harvey H R. Limnol. Oceanogr., 2004, 49:735.
[27] Dittmar T, Paeng J, Gihring T M, Suryaputra I G N A, Huettel M. Limnol. Oceanogr., 2012, 57:1171.
[28] Stubbins A, Spencer R, Mann P, Holmes R M, McClelland J W, Niggemann J, Dittmar T. Front. Earth Sci., 2015, 3:63.
[29] Khan A L, Jaffé R, Ding Y, McKnight D M. Geophys. Res. Lett., 2016, 43:5750.
[30] Dittmar T, Koch B P. Mar. Chem., 2006, 102:208.
[31] Marques J S J, Dittmar T, Niggemann J, Almeida M G, Gomez-Saez G V, Rezende C E. Front. Earth Sci., 2017, 5:11.
[32] Wagner S, Jaffé R. Org. Geochem., 2015, 86:1.
[33] Wagner S, Cawley K M, Rosario-Ortiz F L, Jaffé R. Biogeochemistry, 2015, 124:1.
[34] Ding Y, Yamashita Y, Dodds W K, Jaffé R. Chemosphere, 2013, 90:2557.
[35] Kaal J, Wagner S, Jaffé R. J. Anal. Appl. Pyrol., 2016, 118:181.
[36] Qu X L, Fu H Y, Mao J D, RanY, Zhang D N, Zhu D Q. Carbon, 2016, 96:759.
[37] Fu H Y, Liu H T, Mao J D, Chu W Y, Li Q L, Alvarez P J J, Qu X L, Zhu D Q. Environ. Sci. Technol., 2016, 50:1218.
[38] Hockaday W C, Grannas A M, Kim S, Hatcher P G. Org. Geochem., 2006, 37:501.
[39] Hockaday W C, Grannas A M, Kim S, Hatcher P G. Geochim. Cosmochim. Acta, 2007. 71:3432.
[40] Stubbins A, Spencer R G M, Chen H M, Hatcher P G, Mopper K, Hernes P J, Mwamba V L, Mangangu A M, Wabakanghanzi J N, Six J. Limnol. Oceanogr., 2010, 55:1467.
[41] Ward C P, Sleighter R L, Hatcher P G, Cory R M. Environ. Sci. Proc. Impacts, 2014, 16:721.
[42] Schmidt M W I, Torn M S, Abiven S, Dittmar T, Guggenberger G, Janssens I A, Kleber M, Kogel-Knabner I, Lehmann J, Manning D A C, Nannipieri P, Rasse D P, Weiner S, Trumbore S E. Nature, 2011, 478:49.
[43] Reuter J H, Perdue E M. Geochim. Cosmochim. Acc., 1977, 41:325.
[44] Gauthier T D, Seitz W R, Grant C L. Environ. Sci. Technol., 1987, 21:243.
[45] Senesi N. Sci. Total Environ., 1992, 123:63.
[46] Chin Y P, Aiken G R, Danielsen K M. Environ. Sci. Technol., 1997, 31:1630.
[47] Xia K, Bleam W, Helmke P A. Geochim. Cosmochim. Acta, 1997, 61:2211.
[48] Klaus U, Mohamed S, Volk M, Spiteller M. Chemosphere, 1998, 37:341.
[49] Perminova I V, Grechishcheva N Y, Petrosyan V S. Environ. Sci. Technol., 1999, 33:3781.
[50] Kopinke F D, Georgi A, MacKenzie K. Environ. Sci. Technol., 2001, 35:2536.
[51] Yamamoto H, Liljestrand H M, Shimizu Y, Morita M. Environ. Sci. Technol., 2003, 37:2646.
[52] Wu J, Zhang H, He P J, Shao L M. Water Res., 2011, 45:1711.
[53] 邰超(Tai C), 李雁宾(Li Y B), 阴永光(Yin Y G), 蔡勇(Cai Y), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2012, 24:1387.
[54] 阴永光(Yin Y G), 李雁宾(Li Y B), 马旭(Ma X), 刘景富(Liu J F), 江桂斌(Jiang G B). 化学进展(Progress in Chemistry), 2013, 25:2169.
[55] Tang J F, Li X H, Luo Y, Li G, Khan S. Chemosphere, 2016, 152:399.
[56] Pan B, Ghosh S, Xing B S. Environ. Sci. Technol., 2007, 41:6472.
[57] Pan B, Ghosh S, Xing B S. Environ. Sci. Technol., 2008, 42:1594.
[58] Buerge-Weirich D, Behra P, Sigg L. Aquat. Geochem., 2003, 9:65.
[59] Peng P, Lang Y H, Wang X M. Ecol. Eng., 2016, 90:225.
[60] Wang B Y, Zhang W, Li H, Fu H Y, Qu X L, Zhu D Q. Environ. Pollut., 2017, 220:1349.
[61] Pignatello J J, Xing B S. Environ. Sci. Technol., 1996, 30:1.
[62] Braida W J, Pignatello J J, Lu Y F, Ravikovitch P I, Neimark A V, Xing B S. Environ. Sci. Technol., 2003, 37:409.
[63] Uchimiya M, Bannon D I. J. Agric. Food Chem., 2013, 61:7679.
[64] Schwarzenbach R P, Stierli R, Lanz K, Zeyer J. Environ. Sci. Technol., 1990, 24:1566.
[65] Curtis G P, Reinhard M. Environ. Sci. Technol., 1994, 28:2393.
[66] Scott D T, McKnight D M, Blunt-Harris E L. Kolesar S E, Lovley D R. Environ. Sci. Technol., 1998, 32:2984.
[67] Gu B H, Yan H, Zhou P, Watson D B, Park M, Istok J. Environ. Sci. Technol., 2005, 39:5268.
[68] Bialk H M, Simpson A J, Pedersen J A. Environ. Sci. Technol., 2005, 39:4463.
[69] Jiang J, Bauer I, Paul A, Kappler A. Environ. Sci. Technol., 2009, 43:3639.
[70] Sarkar B, Naidu R, Krishnamurti G S R, Megharaj M. Environ. Sci. Technol., 2013, 47:13629.
[71] Graber E R, Tsechansky L, Lew B, Cohen E. Eur. J. Soil Sci., 2014, 65:162.
[72] Dong X L, Ma L Q, Gress J, Harris W, Li Y C. J. Hazard. Mater., 2014, 267:62.
[73] Chin Y P, Aiken G, Oloughlin E. Environ. Sci. Technol., 1994, 28:1853.
[74] Helms J R, Stubbins A, Ritchie J D, Minor E C, Kieber D J, Mopper K. Limnol. Oceanogr., 2008, 53:955.
[75] Fang G D, Liu C, Wang Y J, Dionysios D D, Zhou D M. Appl. Catal. B-Environ., 2017, 214:34.
[76] Suda I, Suda M, Hirayama K. Arch. Toxicol., 1993, 67:365.
[77] Vialaton D, Richard C, Baglio D, Paya-Perez A B. J. Photoch. Photobio. A, Chem., 1998, 119:39.
[78] Xia X H, Li G C, Yang Z F, Chen Y M, Huang G H. Environ. Pollut., 2009, 157:1352.
[79] Yin Y G, Liu J F, Jiang G B. ACS Nano, 2012, 6:7910.
[80] Chen L, Shen C F, Zhou M M, Tang X J, Chen Y X. Environ. Sci. Pollut. Res., 2013, 20:1842.
[81] Aguer J P, Richard C. Chemosphere, 1999, 10:2293.
[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[3] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[4] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.
[5] 柯少勇, 吴兆圆, 万中义, 方伟, 张亚妮, 王开梅. 具有农药活性的微生物源核苷类化合物[J]. 化学进展, 2019, 31(7): 954-968.
[6] 杨世迎, 张艺萱, 郑迪, 辛佳. 零价铝在水介质中的表面作用机制[J]. 化学进展, 2017, 29(8): 879-891.
[7] 杨世迎, 张翱, 任腾飞, 张宜涛. 炭基材料催化过氧化物降解水中有机污染物:表面作用机制[J]. 化学进展, 2017, 29(5): 539-552.
[8] 葛余俊, 赤骋, 伍蓉, 郭霞, 张巧, 杨剑*. 基于金纳米棒的核壳纳米结构及其光学性质研究[J]. 化学进展, 2012, 24(05): 776-783.
[9] 曲平 何华 Liu,Xuhui . 铑配合物的抗肿瘤活性及其作用机制研究[J]. 化学进展, 2006, 18(12): 1646-1651.
阅读次数
全文


摘要

溶解态黑碳的环境过程研究