English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1142-1153 DOI: 10.7536/PC170437 前一篇   后一篇

• 综述 •

三价锰的性质、产生及环境意义

饶丹丹1, 孙波1, 乔俊莲1, 关小红1,2*   

  1. 1. 同济大学环境科学与工程学院 上海 200092;
    2. 暨南大学环境学院 广州市环境暴露与健康重点实验室 广州 510632
  • 收稿日期:2017-04-25 修回日期:2017-05-28 出版日期:2017-09-15 发布日期:2017-09-05
  • 通讯作者: 关小红,e-mail:guanxh@tongji.edu.cn E-mail:guanxh@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21522704)、广州市环境暴露与健康重点实验室开放基金(No.GZKLEEH201602)及污染控制与资源化研究国家重点实验室基金(No.PCRRK16001)资助

The Properties, Generation and Environmental Significance of Mn (Ⅲ)

Dandan Rao1, Bo Sun1, Junlian Qiao1, Xiaohong Guan1,2*   

  1. 1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092;
    2. Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China
  • Received:2017-04-25 Revised:2017-05-28 Online:2017-09-15 Published:2017-09-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21522704), Guangzhou Key Laboratory of Environmental Exposure and Health (No. GZKLEEH201602) and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (No. PCRRK16001)
锰是一种储量丰富、分布广泛、价态丰富(0~+7)的过渡金属。三价锰(Mn(Ⅲ))作为一种中间价态锰,易发生单电子转移反应,且易歧化、不易直接检测,导致其在自然界中的存在和作用曾被长期忽略。近期研究显示,络合态Mn(Ⅲ)在海底孔隙水、沉积物好氧/厌氧交界处等环境中广泛存在并对其中生物化学反应有重要影响;络合态及非络合态Mn(Ⅲ)在实验室研究中先后被发现参与到快速且有效地降解污染物的过程。本文综述了环境中Mn(Ⅲ)的存在形态、生成途径,讨论了配体及生物作用对该过程的影响;介绍了实验室中Mn(Ⅲ)的生成方法;总结了Mn(Ⅲ)的水解、歧化、氧化还原电位等性质;概述了Mn(Ⅲ)的环境意义;分析了将Mn(Ⅲ)应用于水污染控制的可能性;并对该领域未来的发展方向进行了展望。
Manganese,as a transition metal with various valences (0~+7),is abundant and widely spread.Manganese (Ⅲ)[Mn (Ⅲ)] can act as both electron acceptor and electron donor.Soluble Mn (Ⅲ) has long been overlooked due to the easy disproportionation and difficulty in detection.However,recent studies show that Mn (Ⅲ) can spread widely in pore water and sediment oxic/anoxic interfaces,playing important roles in biogeochemical redox processes.Further,Mn (Ⅲ) with/without ligands show promises in oxidation of contaminants.Therefore,this review summarizes:(1) the presence of Mn (Ⅲ) in aquatic environment and its generation routes,illustrates the involvement of ligands and biological activities;(2) the methods of preparing Mn (Ⅲ) with/without ligands in lab and quantifying the concentration of Mn (Ⅲ);(3) the hydrolysis constants,disproportionation properties,and redox potentials of Mn (Ⅲ);(4) the environmental significance and possible application of Mn (Ⅲ).Finally,the research needs are proposed.
Contents
1 Introduction
2 Generation of Mn(Ⅲ)
2.1 Mn(Ⅲ) generation in nature
2.2 Mn(Ⅲ) preparation and detection in laboratory
3 Some aspects of chemistry of soluble Mn(Ⅲ)
3.1 Common Mn(Ⅲ) complexes
3.2 Stability constants of Mn(Ⅲ) complexes
3.3 Hydrolysis constants of Mn(Ⅲ)
3.4 Absorption spectra of Mn(Ⅲ)
3.5 Redox potentials of Mn(Ⅲ)
4 Environmental significance of Mn(Ⅲ)
5 Application of Mn(Ⅲ) in water treatment
6 Conclusion

中图分类号: 

()
[1] Wang Z M, Xiong W, Tebo B M, Giammar D E. Environmental Science & Technology, 2014, 48(1):289.
[2] Hu E D, Zhang Y, Wu S Y, Wu J, Liang L Y, He F. Water Research, 2017, 111:234.
[3] Trouwborst R E, Clement B G, Tebo B M, Glazer B T, Luther G W. Science, 2006, 313(5795):1955.
[4] Gotoh S, Patrick W H. Soil Sci. Soc. Am. Proc., 1972, 36(5):738.
[5] Yakushev E, Pakhomova S, Kai S, Skei J. Marine Chemistry, 2009, 117(1):59.
[6] Schnetger B, Dellwig O. Journal of Marine Systems, 2012, 90(1):23.
[7] Madison A S, Tebo B M. Talanta, 2011, 84(2):374.
[8] Kostka J E, Luther G W, Nealson K H. Geochimica et Cosmochimica Acta, 1995, 59(5):885.
[9] Skoog D, West D, Holler F, Crouch S. Fundamentals of Analytical Chemistry. 9th ed. CA:Cengage Learning, Inc, 2013.
[10] Tebo B M, Bargar J R, Clement B G, Dick G J, Murray K J, Parker D, Verity R, Webb S M. Annual Review of Earth & Planetary Sciences, 2004, 21(32):287.
[11] Junta J L, Hochella M F. Geochimica et Cosmochimica Acta, 1994, 58(22):4985.
[12] Zhu M Q, Paul K W, Kubicki J D, Sparks D L. Environmental Science & Technology, 2009, 43(17):6655.
[13] Simanova A A, Peña J. Environmental Science & Technology, 2015, 49(18):10867.
[14] Dion H G, Mann P J G. Journal of Agricultural Science, 1946, 36(4):239.
[15] Heintze S G, Mann P J G. Journal of Agricultural Science, 1947, 37(1):23.
[16] Popp J L, Kalyanaraman B, Kirk T K. Biochemistry, 1990, 29(46):10475.
[17] Mann P J G, Quastel J H. Nature, 1946, 158(4005):154.
[18] Luther G W, Nuzzio D B, Wu J F. Analytica Chimica Acta, 1994, 284(3):473.
[19] Hastings D, Emerson S. Geochimica et Cosmochimica Acta, 1986, 50(8):1819.
[20] Myers C R, Nealson K H. Science, 1988, 240(4857):1319.
[21] Diem D, Stumm W. Geochimica et Cosmochimica Acta, 1984, 48(7):1571.
[22] Murray J W, Dillard J G, Giovanoli R, Moers H, Stumm W. Geochimica et Cosmochimica Acta, 1985, 49(2):463.
[23] Morgan J J. Geochimica et Cosmochimica Acta, 2005, 69(1):35.
[24] Duckworth O W, Martin S T. Geochimica et Cosmochimica Acta, 2004, 68(3):607.
[25] Jun Y S. Environmental Science & Technology, 2003, 37(11):2363.
[26] Davies S H R, Morgan J J. Journal of Colloid & Interface Science, 1989, 129(1):63.
[27] Sung W, Morgan J J. Geochimica et Cosmochimica Acta, 1981, 45(12):2377.
[28] Madden A S, Hochella M F. Geochimica et Cosmochimica Acta, 2005, 69(2):389.
[29] Klewicki J K, Morgan J J. Environmental Science & Technology, 1998, 32(19):2916.
[30] Duckworth O W, Sposito G. Environmental Science & Technology, 2005, 39(16):6037.
[31] Wilson D E. Geochimica et Cosmochimica Acta, 1980, 44(9):1311.
[32] Jenne E A. Controls on Mn, Fe, Co, Ni, Cu, and Zn Concentrations in Soils and Water:the Significant Role of Hydrous Mn and Fe Oxides, 1968. 337.
[33] Post J E. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3447.
[34] Wang Y, Stone A T. Environmental Science & Technology, 2008, 42(12):4397.
[35] Thomas L. Master's Dissertation of California Institute of Technology, 1999.
[36] Klewicki J K, Morgan J J. Geochimica et Cosmochimica Acta, 1999, 63(19/20):3017.
[37] Duckworth O W, Sposito G. Environmental Science & Technology, 2005, 39(16):6045.
[38] Morgan J J. Principles and Applications of Water Chemistry, 1967:561.
[39] Nowack B, VanBriesen J M. Biogeochemistry of Chelating gents. ACS Symposium Series, 2005, 1.
[40] Khalifa S M, El-Atrash A M, Helal A A, Aly H F. Isotopenpraxis Isotopes in Environmental & Health Studies, 1989, 25(8):335.
[41] Anderson R L, Bishop W E, Campbell R L, Becking G C. Critical Reviews in Toxicology, 1985, 15(1):1.
[42] Schowanek D, Mcavoy D, Versteeg D, Hanstveit A. Aquatic Toxicology, 1996, 36(3/4):253.
[43] Szabó O, Farkas E. Inorganica Chimica Acta, 2011, 376(1):500.
[44] Farkas E, Bátka D, Pataki Z, Buglyó P, Santos M A. Dalton Trans., 2004, 8(8):1248.
[45] Beijerinck M W. Folia Microbiol, 1913, 2:123.
[46] Tebo B M, Emerson S. Biogeochemistry, 1986, 2(2):149.
[47] Tipping E. Geochimica et Cosmochimica Acta, 1984, 48(6):1353.
[48] Tebo B M, Emerson S. Applied & Environmental Microbiology, 1985, 50(5):1268.
[49] Tipping E, Thompson D W, Davison W. Chemical Geology, 1984, 44(4):359.
[50] Cowen J P, Massoth G J, Baker E T. Revista Española De Reumatismo Y Enfermedades Osteoarticulares, 1986, 11(8):310.
[51] Tebo B M. Deep Sea Research Part A Oceanographic Research Papers, 1991, 38(10):S883.
[52] Mandernack K W, Tebo B M. Geochimica et Cosmochimica Acta, 1993, 57(16):3907.
[53] Wehrli B, Friedl G, Manceau A. Advances in Chemistry, 1995:111.
[54] Harvey J W, Fuller C C. Water Resources Research, 1998, 34(4):623.
[55] Hunter K S, Wang Y, Cappellen P V. Journal of Contaminant Hydrology, 2000, 47(2/4):297.
[56] Fuller C C, Harvey J W. Environmental Science & Technology, 2000, 34(7):1150.
[57] Johnston C G, Kipphut G W. Applied & Environmental Microbiology, 1988, 54(6):1440.
[58] Richardson L L, Aguilar C, Nealson K H. Limnology & Oceanography, 1988, 33(3):352.
[59] Parker D L, Morita T, Mozafarzadeh M L, Verity R, Mccarthy J K, Tebo B M. Geochimica et Cosmochimica Acta, 2007, 71(23):5672.
[60] Hullo M F, Moszer I, Danchin A, Martinverstraete I. Journal of Bacteriology, 2001, 183(18):5426.
[61] Parker D, Sposito G, Tebo B. Geochimica et Cosmochimica Acta, 2004, 68(23):4809.
[62] Höfer C, Schlosser D. Febs Letters, 1999, 451(2):186.
[63] Schlosser D, Höfer C. Appl. Environ. Microbiol., 2002, 68(7):3514.
[64] Francis C A, Tebo B M. Applied & Environmental Microbiology, 2001, 67(9):4272.
[65] Webb S M, Dick G J, Bargar J R, Tebo B M. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(15):5558.
[66] Davies G. Coordination Chemistry Reviews, 1969, 4(2):199.
[67] Luther G W, Ruppel D T, Burkhard C. Mineral-Water Interfacial Reactions, Washington DC, 1999, 265.
[68] Jee J E, Bakac A. Journal of Physical Chemistry A, 2010, 114(5):2136.
[69] Diebler H, Sutin N. Journal of Physical Chemistry, 1963, 68(1):174.
[70] Davies G, Kirschenbaum L J, Kustin K. Inorganic Chemistry, 1969, 8(3):146.
[71] Sisley M J, Jordan R B. Inorganic Chemistry, 2006, 45(26):10758.
[72] Sun B, Guan X, Fang J, Tratnyek P G. Environmental Science & Technology, 2015, 49(20):12414.
[73] Pickkaplan M, Rabani J. Journal of Physical Chemistry, 1976, 80(17):1840.
[74] Lumepereira C, Baral S, Henglein A, Janata E. Journal of Physical Chemistry, 1985, 89:26(26):5772.
[75] Fackler J J, Chawla I. Inorganic Chemistry, 1964, 4(12):1130.
[76] Hamm R E, Suwyn M A. Inorganic Chemistry, 2002, 6(1):139.
[77] Glenn J K, Akileswaran L, Gold M H. Archives of Biochemistry & Biophysics, 1986, 251(2):688.
[78] Roy B P, Dumonceaux T, Koukoulas A A, Archibald F S. Appl. Environ. Microbiol., 1996, 62(12):4417.
[79] Spasojevi D? I, Batini D? -Haberle I. Inorganica Chimica Acta, 2002, 328(1):230.
[80] Braun V, Braun M. Current Opinion in Microbiology, 2002, 5(2):194.
[81] Harrington J M, Bargar J R, Jarzecki A A, Roberts J G, Sombers L A, Duckworth O W. BioMetals, 2012, 25(2):393.
[82] Harrington J M, Parker D L, Bargar J R, Jarzecki A A, Tebo B M, Sposito G, Duckworth O W. Geochimica et Cosmochimica Acta, 2012, 88(88):106.
[83] Nico P S, Zasoski R J. Environmental Science & Technology, 2001, 35(16):3338.
[84] Wells C F, Davies G. Nature, 1965, 205(4972):692.
[85] Luther G W, Madison A S, Mucci A, Sundby B, Oldham V E. Marine Chemistry, 2015, 173:93.
[86] Baral S, Lume-Pereira C, Janata E, Henglein A. Cheminform, 1987, 18(3):198703033.
[87] Biedermann G, Palombari R, Andresen A F, Andresen Y, Rundqvist S, Fernholt L, Gundersen G, Nielsen C J, Cyvin B N, Cyvin S J. Acta Chemica Scandinavica, 1978, 32a:381.
[88] Macartney D H, Sutin N. Inorganic Chemistry, 1985, 24(21):3403.
[89] Wells C F, Davies G O. Journal of the Chemical Society A Inorganic Physical Theoretical, 1967, (11):1858.
[90] Rosseinsky D R, Nicol M J, Kite K, Hill R J. Journal of the Chemistry Society faraday Trans, 1974, 70:2232.
[91] Yoshino Y, Ouchi A, Tsunoda Y, Kojima M. Canadian Journal of Chemistry, 1961, 40(4):775.
[92] Ferrer-Sueta G, Batini D? -Haberle I, Spasojevi D? I, Fridovich I, Radi R. Chemical Research in Toxicology, 1999, 12(5):442.
[93] Sherigara B S, Bhat K I, Pinto I, Gowda N M M. International Journal of Chemical Kinetics, 1995, 27(7):675.
[94] Magers K D S C G, Sawyer D T. Inorganic Chemistry, 1978, 17(3):515.
[95] Luther G W, Popp J I. Aquatic Geochemistry, 2002, 8(1):15.
[96] Hulth S, Aller R C, Gilbert F. Geochimica et Cosmochimica Acta, 1999, 63(1):49.
[97] Bayer W F, Fridovich I. Archives of Biochemistry & Biophysics, 1989, 271(1):149.
[98] Schroeder K A, Hamm R E. Inorganic Chemistry, 1964, 3(3):391.
[99] Faulkner K M, Stevens R D, Fridovich I. Archives of Biochemistry & Biophysics, 1994, 310(310):341.
[100] Zhang G S, Qu J H, Liu H J, Liu R P, Li G T. Environmental Science & Technology, 2007, 41(13):4613.
[101] Twahir U T, Ozarowski A, Angerhofer A. American Chemical Society, 2016, 55(47):6505.
[102] Spasojevi D? I, Batini D? -Haberle I, Stevens R D, Hambright P, Thorpe A N, Grodkowski J, Neta P, Fridovich I. Inorganic Chemistry, 2001, 40(4):726.
[103] Duckworth O W, Bargar J R, Sposito G. BioMetals, 2009, 22(4):605.
[104] Morgan J J. Metal Ions in Biological Systems, 2000, 37:1.
[105] Nico P S, Zasoski R J. Environmental Science & Technology, 2000, 34(16):3363.
[106] Murray K J, Tebo B M. Environmental Science & Technology, 2007, 41(2):528.
[107] Chen J Y, Tsao G C, Zhao Q, Zheng W, Toxicology & Applied Pharmacology, 2001, 175(2):160.
[108] Batinic-Haberle I, Rajic Z, Tovmasyan A, Reboucas J S, Ye X, Leong K W, Dewhirst M W, Vujaskovic Z, Benov L, Spasojevic I. Free Radical Biology & Medicine, 2011, 51(5):1035.
[109] Reaney S H, Bench G, Smith D R. Toxicological Sciences, 2006, 93(1):114.
[110] Reaney S H, Kwik-Uribe C L, SmithD R. Chemical Research in Toxicology, 2002, 15(9):1119.
[111] Jiang J, Pang S Y, Ma J. Environmental Science & Technology, 2010, 44(11):4270.
[112] Sun B, Dong H, He D, Rao D D, Guan X H. Environmental Science & Technology, 2016, 50(3):1473.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[3] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[6] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[7] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[8] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[9] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[10] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[11] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[12] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[13] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
阅读次数
全文


摘要

三价锰的性质、产生及环境意义