English
新闻公告
More
化学进展 2017, Vol. 29 Issue (9): 1062-1071 DOI: 10.7536/PC170427 前一篇   后一篇

• 综述 •

碳基纳米材料对水环境中放射性元素铀的吸附

梁宇, 顾鹏程, 姚文, 于淑君, 王建, 王祥科*   

  1. 华北电力大学环境科学与工程学院 北京 102206
  • 收稿日期:2017-04-18 修回日期:2017-06-09 出版日期:2017-09-15 发布日期:2017-08-22
  • 通讯作者: 王祥科,e-mail:xkwang@ncepu.edu.cn E-mail:xkwang@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21577032)资助

Adsorption of Radionuclide Uranium onto Carbon-Based Nanomaterials from Aqueous Systems

Yu Liang, Pengcheng Gu, Wen Yao, Shujun Yu, Jian Wang, Xiangke Wang*   

  1. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2017-04-18 Revised:2017-06-09 Online:2017-09-15 Published:2017-08-22
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21577032).
放射性元素铀既是核燃料的主要成分又是核废料后期处理的关键元素,对环境造成潜在的污染,铀的污染治理研究对治理核污染有着重要的现实意义。本文针对碳纳米管、石墨烯以及其他碳基纳米材料对水体环境中放射性元素铀的吸附研究进行了概述和展望,包括碳基纳米材料的制备方法、去除效果和吸附机理。此外,针对纯碳材料对铀吸附量低等问题,提出并归纳了多种表面改性及复合方法。总之,制备高效低成本的碳基纳米吸附材料,提高碳基纳米材料对复杂条件下放射性元素的高效处理能力,将成为今后重点研究方向。
With the development of nuclear technology, the radioactive nuclide pollution such as uranium pollution is threating the human health. Uranium is the major constituent of nuclear fuel and the key nuclide in spent fuel reprocessing. Carbon-based nanomaterials are promising for uranium removal due to their large specific surface area, excellent acid stability, higher radiation and thermal resistance. In this review, carbon-based nanomaterials such as carbon nanotubes, graphene and other carbon materials used as adsorbents for uranium removal have been summarized. The relevant synthetic methods, removal performance and adsorption mechanism are also discussed. And the adsorption performance of carbon-based materials can be improved by surface oxidization and physical or chemical modifications such as coating, grafting functional groups or molecules. However, the practical application of carbon-based nanomaterials has been limited because of their high cost and complicated synthesis process. Therefore, how to develop a low-cost, mature process technology and application system will be an important research direction in the future.
Contents
1 Introduction
2 The species of carbon-based nanomaterials
2.1 Carbon nanotubes
2.2 Graphene
2.3 Other carbon-based nanomaterials
3 Adsorption mechanism and influencing factors
4 Conclusion and outlook

中图分类号: 

()
[1] Xu Y C. Energy, 2008, 33(8):1197.
[2] Cao J J, Cohen A, Hansen J, Lester R, Peterson P, Xu H J. Science, 2016, 353(6299):547.
[3] Lenzen M. Energ. Convers. Manage., 2008, 49(8):2178.
[4] Shi W Q, Yuan L Y, Li Z J, Lan J H, Zhao Y L, Chai Z F. Radiochim. Acta, 2012, 100(8/9):727.
[5] Yu S J, Wang X X, Tan X L, Wang X K. Inorg. Chem. Front., 2015, 2(7):593.
[6] Ho J C, Lee C T P, Kao S F, Chen R Y, Ieong M C, Chang H L, Hsieh W H, Tzeng C C, Lu C F, Lin S L. Environ. Int., 2014, 73:295.
[7] Antunes S C, Pereira R, Marques S M, Castro B B, Gonçalves F. Sci. Total Environ., 2011, 410:87.
[8] Zhou S, Zhang X L. Energy, 2010, 35(11):4282.
[9] Zhang R, Chen C L, Li J, Wang X K. Appl. Surf. Sci., 2015, 349:129.
[10] Saïdou, Bochud F O, Baechler S, Moïse K N, Merlin N, Froidevaux P. Radiat. Meas., 2011, 46(2):254.
[11] Tang Y Z, Reeder R J. Geochim. Cosmochim. Acta, 2009, 73(10):2727.
[12] Donia A M, Atia A A, Moussa E M M, El-Sherif A M, Abd El-Magied M O. Hydrometallurgy, 2009, 95(3/4):183.
[13] Wang X X, Zhang S W, Li J X, Xu J Z, Wang X K. Inorg. Chem. Front., 2014, 1(8):641.
[14] Hoyer M, Zabelt D, Steudtner R, Brendler V, Haseneder R, Repke J U. Sep. Purif. Technol., 2014, 132:413.
[15] Liu X, Li J X, Wang X X, Chen C L, Wang X K. J. Nucl. Mater., 2015, 466:56.
[16] Shi W Q, Zhao Y L, Chai Z F. Prog. Chem., 2011, 23(7):1478.
[17] Bachmaf S, Merkel B J. Environ. Earth Sci., 2010, 63(5):925.
[18] Douglas G, Shackleton M, Woods P. Appl. Geochem., 2014, 42:27.
[19] Chouyyok W, Warner C L, Mackie K E, Warner M G, Gill G A, Addleman R S. Ind. Eng. Chem. Res., 2016, 55(15):4195.
[20] Wang Y L, Liu Z Y, Li Y X, Bai Z L, Liu W, Wang Y X, Xu X M, Xiao C L, Sheng D P, Diwu J, Su J, Chai Z F, E. Albrecht-Schmitt T, Wang S A. J. Am. Chem. Soc., 2015, 137(19):6144.
[21] Liu W, Dai X, Bai Z L, Wang Y L, Yang Z X, Zhang L J, Xu L, Chen L H, Li Y X, Gui D X, Diwu J, Wang J Q, Zhou R H, Chai Z F, Wang S A. Environ. Sci. Technol., 2017, 51:3911.
[22] Zheng T, Yang Z X, Gui D X, Liu Z Y, Wang X X, Dai X, Liu S T, Zhang L J, Gao Y, Chen L H, Sheng D P, Wang Y L, Diwu J, Wang J Q, Zhou R H, Chai Z F, E. Albrecht-Schmitt T, Wang S A. Nat. Commnun., 2017, 8:15369.
[23] Chen L H, Zheng T, Bao S S, Zhang L J, Liu H K, Zheng L M, Wang J Q, Wang Y X, Diwu J, Chai Z F, E. Albrecht-Schmitt T, Wang S A. Chem. -Eur. J., 2016, 22(34):11954.
[24] 盛国栋(Sheng G D), 杨世通(Yang S T), 郭志强(Guo Z Q), 孙玉兵(Sun Y B), 谭小丽(Tan X L), 陈长伦(Chen C L), 邵大冬(Shao D D), 王祥科(Wang X K). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2012, (06):321.
[25] Mauter M S, Elimelech M. Environ. Sci. Technol., 2008, 42(16):5843.
[26] Li Z J, Chen F, Yuan L Y, Liu Y L, Zhao Y L, Chai Z F, Shi W Q. Chem. Eng. J., 2012, 210:539.
[27] Fasfous I I, Dawoud J N. Appl. Surf. Sci., 2012, 259:433.
[28] Tian G, Geng J X, Jin Y D, Wang C L, Li S Q, Chen Z, Wang H, Zhao Y S, Li S J. J. Hazard. Mater., 2011, 190(1/3):442.
[29] 李兴亮(Li X L), 宋强(Song Q), 刘碧君(Liu B J), 刘春霞(Liu C X), 王航(Wang H), 耿俊霞(Geng J X), 陈震(Chen Z), 刘宁(Liu N), 李首建(Li S J). 化学进展(Progress in Chemistry), 2011, 7:1446.
[30] Chen J H, Lu D Q, Chen B, OuYang P K. J. Radioanal. Nucl. Chem., 2012, 295(3):2233.
[31] Song M M, Wang Q, Meng Y D. J. Radioanal. Nucl. Chem., 2012, 293(3):899.
[32] Lai Z J, Zhang Z B, Cao X H, Dai Y, Hua R, Le Z G, Luo M B, Liu Y H. J. Radioanal. Nucl. Chem., 2016, 310(3):1335.
[33] Ren X M, Chen C L, Nagatsu M, Wang X K. Chem. Eng. J., 2011, 170(2/3):395.
[34] Stafiej A, Pyrzynska K. Sep. Purif. Technol., 2007, 58(1):49.
[35] Tofighy M A, Mohammadi T. J. Hazard. Mater., 2011, 185(1):140.
[36] Li Y H, Wang S G, Zhang X F, Wei J Q, Xu C L, Luan Z K. Mater. Res. Bull., 2003, 38(3):469.
[37] Zhao G X, Li J X, Ren X M, Chen C L, Wang X K. Environ. Sci. Technol., 2011, 45(24):10454.
[38] Li J H, Li J Y, Meng H Y, Xie S Y, Zhang B W, Li L F, Ma H J, Zhang J Y, Yu M. J. Mater. Chem. A, 2014, 2(9):2934.
[39] Kim J H, Lee H I, Yeon J W, Jung Y, Kim J M. J. Radioanal. Nucl. Chem., 2010, 286(1):129.
[40] Li F Z, Li D M, Li X L, Liao J L, Li S J, Yang J J, Yang Y Y, Tang J, Liu N. Chem. Eng. J., 2016, 284:630.
[41] Kane C L, Mele E. Phys. Rev. Lett., 1997, 78(10):1932.
[42] Deng J J, You Y, Sahajwalla V, Joshi R K. Carbon, 2016, 96:105.
[43] Cho H G, Kim S W, Lim H J, Yun C H, Lee H S, Park C R. Carbon, 2009, 47(15):3544.
[44] Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R. J. Mater. Chem., 2011, 21(40):15872.
[45] Sun Y B, Yang S T, Sheng G D, Guo Z Q, Wang X K. J. Environ. Radioact., 2012, 105:40.
[46] Shao D D, Hu J, Wang X K. Plasma Processes Polym., 2010, 7(12):977.
[47] Duan S X, Liu X, Wang Y N, Meng Y D, Alsaedi A, Hayat T, Li J X. Plasma Processes Polym., 2017, DOI:10.1002/ppap.201600218.
[48] Duan S X, Wang Y N, Liu X, Shao D D, Hayat T, Alsaedi A, Li J X. ACS Sustainable Chem. Eng., 2017, 5(5):4073.
[49] Wang X X, Fan Q H, Chen Z S, Wang Q, Li J X, Hobiny A, Alsaedi A, Wang X K. Chem. Rec., 2016, 16(1):295.
[50] Wang Y, Gu Z X, Yang J J, Liao J L, Yang Y Y, Liu N, Tang J. Appl. Surf. Sci., 2014, 320:10.
[51] Tan L C, Liu Q, Jing X Y, Liu J Y, Song D L, Hu S X, Liu L H, Wang J. Chem. Eng. J., 2015, 273:307.
[52] Mkhoyan K A, Contryman A W, Silcox J, Stewart D A, Eda G, Mattevi C, Miller S, Chhowalla M. Nano Lett., 2009, 9(3):1058.
[53] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230):706.
[54] Geim A K. Science, 2009, 324(5934):1530.
[55] Kostarelos K, Novoselov K S. Science, 2014, 344(6181):261.
[56] Machado B F, Serp P. Catal. Sci. Technol., 2012, 2(1):54.
[57] Chabot V, Higgins D, Yu A P, Xiao X C, Chen Z W, Zhang J J. Energ. Environ. Sci., 2014, 7(5):1564.
[58] Yi M, Shen Z G. J. Mater. Chem. A, 2015, 3(22):11700.
[59] Park S, An J, Piner R D, Jung I, Yang D, Velamakanni A, Nguyen S T, Ruoff R S. Chem. Mater., 2008, 20(21):6592.
[60] Obraztsov A N. Nat. Nanotechnol., 2009, 4(4):212.
[61] Wei Z Q, Wang D B, Kim S, Kim S Y, Hu Y K, Yakes M K, Laracuente A R, Dai Z, Marder S R, Berger C. Science, 2010, 328(5984):1373.
[62] Brodie B C. Philosophical Transactions of the Royal Society of London, 1859, 149:249.
[63] Staudenmaier L. Eur. J. Inorg. Chem., 1898, 31(2):1481.
[64] Hummers Jr W S, Offeman R E. J. Am. Chem. Soc., 1958, 80(6):1339.
[65] Wang S B, Sun H Q, Ang H M, Tadé M O. Chem. Eng. J., 2013, 226:336.
[66] Loh K P, Bao Q L, Ang P K, Yang J. J. Mater. Chem., 2010, 20(12):2277.
[67] Wang Y N, Liu X, Huang Y X, Hayat T, Alsaedi A, Li J X. J. Radioanal. Nucl. Chem., 2017, 311(1):209.
[68] Liu X, Wang X X, Li J X, Wang X K. Sci. China Chem., 2016, 59(7):869.
[69] Chen X, Wang X L, Wang S W, Qi J S, Xie K, Liu X, Li J X. Arab. J. Chem., 2016, DOI:org/10.1016/j.arabjc.2016.06.009.
[70] Zhao Z W, Li J X, Wen T, Shen C C, Wang X K, Xu A W. Colloids Surf. A Physicochem. Eng. Asp., 2015, 482:258.
[71] Shao D D, Hou G S, Li J X, Wen T, Ren X M, Wang X K. Chem. Eng. J., 2014, 255:604.
[72] Liu X, Huang Y S, Duan S X, Wang Y N, Li J X, Chen Y T, Hayat T, Wang X K. Chem. Eng. J., 2016, 302:763.
[73] Zhao G X, Wen T, Yang X, Yang S B, Liao J L, Hu J, Shao D D, Wang X K. Dalton Trans., 2012, 41(20):6182.
[74] Zhang Z B, Qiu Y F, Dai Y, Wang P F, Gao B, Dong Z M, Cao X H, Liu Y H, Le Z G. J. Radioanal. Nucl. Chem., 2016, 310(2):547.
[75] Song W C, Wang X X, Wang Q, Shao D D, Wang X K. Phys. Chem. Chem. Phys., 2015, 17(1):398.
[76] Cheng H X, Zeng K F, Yu J T. J. Radioanal. Nucl. Chem., 2013, 298(1):599.
[77] Chen S P, Hong J X, Yang H X, Yang J Z. J. Environ. Radioact., 2013, 126:253.
[78] Tan L C, Wang Y, Liu Q L, Wang J, Jing X Y, Liu L H, Liu J Y, Song D L. Chem. Eng. J., 2015, 259:752.
[79] Zhao Y G, Li J X, Zhang S W, Chen H, Shao D D. RSC Adv., 2013, 3(41):18952.
[80] Duan S X, Liu X, Wang Y N, Shao D D, Alharbic N S, Alsaedic A, Li J X. J. Taiwan Inst. Chem. Eng., 2016, 65:367.
[81] Duan S X, Li J X, Liu X, Wang Y N, Zeng S Y, Shao D D, Hayat T. ACS Sustainable Chem. Eng., 2016, 4(6):3368.
[82] Chen L, Zhao D L, Chen S H, Wang X B, Chen C L. J. Colloid Interface Sci., 2016, 472:99.
[83] Tan L C, Wang J, Liu Q, Sun Y B, Jing X, Liu L Y, Liu J H, Song D L. New J. Chem., 2015, 39(2):868.
[84] Gao J K, Hou L A, Zhang G H, Gu P. J. Hazard. Mater., 2015, 286:325.
[85] Liang C D, Li Z J, Dai S. Angew. Chem. Int. Ed., 2008, 47(20):3696.
[86] Wang Y Q, Zhang Z B, Liu Y H, Cao X H, Liu Y T, Li Q. Chem. Eng. J., 2012, 198/199:246.
[87] Cai H M, Lin X Y, Qin Y, Luo X G. J. Radioanal. Nucl. Chem., 2016, 311(1):695.
[88] Wen T, Wang X X, Wang J, Chen Z S, Li J X, Hu J, Hayat T, Alsaedi A, Grambow B, Wang X K. Inorg. Chem. Front., 2016, 3(10):1227.
[89] Sun Y B, Yang S B, Chen Y, Ding C C, Cheng W C, Wang X K. Environ. Sci. Technol., 2015, 49(7):4255.
[90] Wang X X, Fan Q H, Yu S J, Chen Z S, Ai Y J, Sun Y B, Hobiny A, Alsaedi A, Wang X K. Chem. Eng. J., 2016, 287:448.
[91] 杜毅(Du Y), 王建(Wang J), 王宏青(Wang H Q), 夏良树(Xia L S),王祥科(Wang X K). 农业环境科学学报(Journal of Agro-Environment Science), 2016, (10):1837.
[92] 王祥学(Wang X X), 李洁(Li J), 于淑君(Yu S J),张瑞(Zhang R), 李家星(Li J X), 王祥科(Wang X K). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2015, (05):329.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[3] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[4] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[5] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[6] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[7] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[8] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[9] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[10] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[11] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[12] 陶学兵, 于吉攀, 梅雷, 聂长明, 柴之芳, 石伟群. 铀催化的氮气活化[J]. 化学进展, 2021, 33(6): 907-913.
[13] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[14] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[15] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.