English
新闻公告
More
化学进展 2017, Vol. 29 Issue (6): 649-658 DOI: 10.7536/PC170348 前一篇   后一篇

• 综述 •

各向异性水凝胶的制备方法及性质研究

何晓燕*, 刘利琴, 王萌, 张彩芸, 张云雷, 王敏慧   

  1. 西北师范大学化学化工学院 兰州 730070
  • 收稿日期:2017-03-31 修回日期:2017-04-22 出版日期:2017-06-15 发布日期:2017-06-06
  • 通讯作者: 何晓燕,e-mail:hexy09@163.com E-mail:hexy09@163.com
  • 基金资助:
    国家自然科学基金项目(No.21164010)和甘肃省杰出青年学者基金项目(No.145RJDA326)资助

The Research of the Anisotropic Hydrogel's Properties and Preparation

Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang   

  1. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2017-03-31 Revised:2017-04-22 Online:2017-06-15 Published:2017-06-06
  • Contact: 10.7536/PC170348 E-mail:hexy09@163.com
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21164010)and the Foundation for Distinguished Young Scholars of Gansu Province (No. 145RJDA326).
水凝胶与生物体中的许多组织(如肌肉、软骨、角膜和皮肤等)具有相似的结构,同时具有良好的生物相容性,比其他任何人工材料都更接近于活体组织,是人造替代器官的理想材料。然而,相比于生物软组织,通过传统方法合成的高分子水凝胶在分子及宏观水平上都表现出各向同性结构,缺少有序结构,从而限制了水凝胶在各领域的应用。各向异性凝胶的合成在一定程度上可解决这一问题。本文主要综述了各向异性水凝胶的制备方法,并对其各向异性的性能作了分类,对影响各向异性的因素进行了总结,最后,针对当前存在的问题,对将来可能的发展方向进行了展望。
Hydrogel is cross-linked polymeric network containing more than 90% water. They have been extensively applied in organ reconstruction, soft tissue prosthesis,cell culturing substrate, and controlled drug release. In addition to their good biocompatibility, they share remarkable resemblance to the structures of many living organisms’ tissues, such as muscles, cartilages, corneas and the skin; one key property of hydrogel is that it can be easily integrated with other functional materials to play a synergistic role, which greatly extends the application in many areas. For instance, the hydrogel containing magnetic nanoparticles can take other special effects besides the role of tissue prosthesis in postoperative organ reconstruction after excision of tumor. Thus, they are more suitable for materials of living tissues than any other artificial ones. However, compared with the biological soft tissue, conventional synthetic hydrogels show isotropic structure at the molecular and macroscopic level, lacking ordered structures, which leads to limitations in practical applications. The synthesis of anisotropic hydrogels, to some degree, solves this problem. In this paper, we mainly focus on the preparation methods of anisotropic hydrogels and the classifications of anisotropic properties. The factors influencing the anisotropy are summarized.The existing problems and further research directions are also discussed.

Contents
1 Introduction
2 The property of the anisotropic hydrogel
2.1 Magnetic property of anisotropic hydrogel
2.2 Mechanical property of anisotropic hydrogel
2.3 Optical property of anisotropic hydrogel
2.4 Swelling property of anisotropic hydrogel
3 The preparation of anisotropic hydrogel
3.1 Anisotropic hydrogel synthesized by template method
3.2 Anisotropic hydrogel synthesized by magnetic field
3.3 Anisotropic hydrogel synthesized by self-assembly
4 Conclusion

中图分类号: 

()
[1] Pakulska M M, Vulic K, Tam R Y, Shoichet M S. Adv. Mater., 2015, 27:5002.
[2] Ni M, Zhang N, Xia W, Wu X, Yao C, Liu X, Hu X Y, Lin C, Wang L. J. Am. Chem. Soc., 2016, 138:6643.
[3] 邵亮(Shao L), 柳明珠(Liu M Z), 邱建辉(Qiu J H), 高春梅(Gao C M), 张国宏(Zhang G H), 泰利军(Tai L J). 化学进展(Progress in Chemistry), 2011, 23(5):923.
[4] Zhao Y, Shi C, Yang X, Shen B, Sun Y, Chen Y, Xu X, Sun H, Yu K, Yang B, Lin Q. ACS Nano, 2016, 10:5856.
[5] Yin M J, Yao M, Gao S, Zhang A P, Tam H Y, Wai P K A. Adv. Mater., 2016, 28:1394.
[6] Luo R, Cao Y, Shi P, Chen C H. Small, 2014, 10:4886.
[7] Wang P, Sun J, Lou Z, Fan F, Hu K, Sun Y, Gu N. Adv. Mater., 2016, 28:10801.
[8] Zhao Y, Liu W, Yang X, Xu H. J. Appl. Polym. Sci., 2008, 110:2234.
[9] Wang H, Guan C, Wang X, Fan H J. Small, 2015, 11:1470.
[10] Marrella A, Lagazzo A, Barberis F, Catelani T, Quarto R, Scaglione S. Carbon, 2017, 115:608.
[11] Li X, Wang Y, Chen J, Wang Y, Ma J, Wu G. ACS Appl. Mater. Interfaces, 2014, 6:3640.
[12] Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G. ACS Nano, 2013, 7:3540.
[13] Zhang C, Jia X, Wang Y, Zhang M, Yang S, Guo J. J. Sep. Sci., 2014, 37:419.
[14] Wang Z, Shen X, Akbari G M, Lin X, Wu Y, Liu X, Sun X, Kim J K. ACS Appl. Mater. Interfaces, 2015, 7:5538.
[15] 郭彦(Guo Y), 高筱玲(Gao X L), 赵健伟(Zhao J W), 田燕妮(Tian Y N). 化学进展(Progress in Chemistry), 2008, 20(6):951.
[16] Ha J W, Sun W, Stender A S, Fang N. J. Phys. Chem. C, 2012, 116:2766.
[17] Wu S, Duan B, Liu P, Zhang C, Qin X, Butcher J T. ACS Appl. Mater. Interfaces, 2016, 8:16950.
[18] Sharma S, Panitch A, Neu C P. Acta Biomater., 2013, 9:4618.
[19] Takahashi H, Shimizu T, Nakayama M, Yamato M, Okano T. Biomaterials, 2013, 34:7372.
[20] Schneider M, Andrä H. Math. Methods Appl. Sci., 2014, 37:1624.
[21] Geeves M A. Nature, 2002, 415:129.
[22] Wu Z L, Sawada D, Kurokawa T, Kakugo A, Yang W, Furukawa H, Gong J P. Macromolecules, 2011, 44:3542.
[23] Chen M, Zhu J, Qi G, He C, Wang H. Mater. Lett., 2012, 89:104.
[24] Pei X, Zan T, Li H, Chen Y, Shi L, Zhang Z. ACS Macro Lett., 2015, 4:1215.
[25] Liu M, Ishida Y, Ebina Y, Sasaki T, Hikima T, Takata M, Aida T. Nature, 2015, 517:68.
[26] Shikinaka K, Koizumi Y, Kaneda K, Osadab Y, Masunaga H, Shigehara K. Polymer, 2013, 54:2489.
[27] Huang C L, Chuang C H, Lo Y L. Carbohydr. Polym., 2013, 96:487.
[28] Millon L E, Guhados G, Wan W. J. Biomed. Mater. Res. Part B, 2008, 86:444.
[29] Hu K, Sun J, Guo Z, Wang P, Chen Q, Ma M, Gu N. Adv. Mater., 2015, 27:2507.
[30] Sakai Y, Oishi A, Takahashi F. Biotechnol. Bioeng., 1999, 62:363.
[31] Chen C H, Abate A R, Lee D, Terentjev E M, Weitz D A. Adv. Mater., 2009, 21:3201.
[32] Thompson J W, Stretz H A, Arce P E, Gao H, Ploehn H J, He J. J. Appl. Polym. Sci., 2012, 126:1600.
[33] Haque M, Kamita G, Kurokawa T, Tsujii K, Gong J P. Adv. Mater., 2010, 22:5110.
[34] Millon L E, Mohammadi H, Wan W K. J. Biomed. Mater. Res. Part B, 2006, 79:305.
[35] Buyanov A L, Gofman I V, Revel's kaya L G, Khripunov A K, Tkachenko A A. J. Mech. Behav. Biomed. Mater., 2010, 3:102.
[36] Choi S, Kim J. J. Mater. Chem. B, 2015, 3:1479.
[37] Lin P, Zhang T, Wang X, Yu B, Zhou F. Small, 2016, 12:4386.
[38] Miyamoto N, Shintate M, Ikeda S, Hoshida Y, Yamauchi Y, Motokawa R, Annaka M. Chem. Commun., 2013, 49:1082.
[39] Maggini L, Liu M, Ishida Y, Bonifazi D. Adv. Mater., 2013, 25:2462.
[40] Swan M C, Bucknall D G, Goodacre T E E, Czernuszka J T. Acta Biomater., 2011, 7:1126.
[41] Tsukuda S, Omichi M, Sugimoto M, Idesaki A, Padalkar V S, Seki S. J. Polym. Sci. Part B:Polym. Phys., 2016, 54:1950.
[42] Haque M A, Kurokawa T, Kamita G, Gong J P. Macromolecules, 2011, 44:8916.
[43] Luo R, Wu J, Dinh N D, Chen C H. Adv. Funct. Mater., 2015, 25:7272.
[44] Zawko S A, Suri S, Truong Q, Schmidt C E. Acta Biomater., 2009, 5:14.
[45] Hou K, Wang H, Lin Y, Chen S,Yang S, Cheng Y, Hsiao B S, Zhu M. Macromol. Rapid Commun., 2016, 37:1795.
[46] Pena-Francesch A, Montero L, Borrós S. Langmuir, 2014, 30:7162.
[47] Hashmi S, GhavamiNejad A, Obiweluozor F O, Vatankhah-Varnoosfaderani M, Stadler F J. Macromolecules, 2012, 45:9804.
[48] Chen P, Yang J J, Li S S, Wang Z, Xiao T Y, Qian Y H, Yu S H. Nano Energy, 2013, 2:249.
[49] Patil S, Chaudhury P, Clarizia L, McDonald M, Reynaud E, Gaines P, Schmidt D F. Acta Biomater., 2012, 8:2919.
[50] Zinchenko A, Miwa Y, Lopatina L I, Sergeyev V G, Murata S. ACS Appl. Mater. Interfaces, 2014, 6:3226.
[51] Salvekar A V, Huang W M, Xiao R, Wong Y S, Venkatraman S S, Tay K H, Shen Z X. Acc. Chem. Res., 2017, 50:141.
[52] Shigekura Y, Chen Y M, Furukawa H, Kaneko T, Kaneko D, Osada Y, Gong J P. Adv. Mater., 2005, 17:2695.
[53] Jung S, Abel J H, Starger J L,Yi H. Biomacromolecules, 2016, 17:2427.
[54] Zhu J, Wang J, Liu Q, Liu Y, Wang L, He C, Wang H. J. Mater. Chem. B, 2013, 1:978.
[55] Chau M, De France K J, Kopera B, Machado V R, Rosenfeldt S, Reyes L, Chan K J W, Förster S,Cranston E D, Hoare T, Kumacheva E. Chem. Mater., 2016, 28:3406.
[56] Barrow M, Zhang H. Soft Matter, 2013, 9:2723.
[57] Mori A, Kaito T, Furukawa H. Mater. Lett., 2008, 62:3459.
[58] Yamamoto I, Ozawa S, Makino T, Yamaguchi M, Takamasu T. Sci. Technol. Adv. Mater., 2008, 9:024214.
[59] Otsuka I, Abe H, Ozeki S. Sci. Technol. Adv. Mater., 2006, 7:327.
[60] Kimura T, Umehara Y, Kimura F. Carbon, 2010, 48:4015.
[61] Zhao F, Gao Y, Shi J, Browdy H M, Xu B. Langmuir, 2010, 27:1510.
[62] Pasc A, Gizzi P, Dupuy N, Parant S, Ghanbaja J, Gérardin C. Tetrahedron Lett., 2009, 50:6183.
[63] Das R N, Kumar Y P, Pagoti S, Patil A J, Dash J. Chem. Eur. J., 2012, 18:6008.
[64] Pappas C G, Frederix P W J M, Mutasa T, Fleming S, Abul-Haija Y M, Kelly S M, Gachagan A, Kalafatovic D, Trevino J, Ulijn R V, Bai S. Chem. Commun., 2015, 51:8465.
[1] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[6] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[7] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[8] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[9] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[10] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.
[11] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[12] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[13] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[14] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[15] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.