English
新闻公告
More
化学进展 2017, Vol. 29 Issue (10): 1184-1194 DOI: 10.7536/PC170340 前一篇   后一篇

• 综述 •

刺激响应梯度聚合物

郭晓峰, 潘翔宇, 魏晓虎, 冯岸超*, 汤华燊*   

  1. 北京化工大学 软物质科学与工程高精尖研究中心 材料科学与工程学院 北京 100029
  • 收稿日期:2017-03-28 修回日期:2017-06-30 出版日期:2017-10-15 发布日期:2017-08-29
  • 通讯作者: 冯岸超,e-mail:thangsh@mail.buct.edu.cn;汤华燊,e-mail:fengac@mail.buct.edu.cn E-mail:thangsh@mail.buct.edu.cn;fengac@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21704001),中央高校基本科研业务费专项资金(No.buctrc201724)和北京软物质科学与工程高精尖创新中心经费资助

Stimuli Responsive Gradient Polymers

Anchao Feng, Xiangyu Pan, Xiaohu Wei, Anchao Feng*, San H. Thang*   

  1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2017-03-28 Revised:2017-06-30 Online:2017-10-15 Published:2017-08-29
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21704001),the Fundamental Research Funds for the Central Universities (No. buctrc201724), and the Beijing Advanced Innovation Center for Soft Matter Science and Engineering.
近年来,刺激响应聚合物因其独特的性质而受到广泛关注,这类聚合物能够感受外界环境刺激(包括光、电、热、力、氧化还原、pH、化学、环境和生物信号等刺激)而产生响应,从而引起体系物理或化学性质的改变。而梯度聚合物则是伴随着可控自由基聚合技术的诞生、发展而出现和形成的一类新型聚合物,区别于无规和嵌段聚合物,梯度聚合物表现出单体组成沿分子链渐变的性质,其中,由亲水性单元和憎水性单元组成的两亲性梯度聚合物在选择性溶剂中可自组装形成多种聚集体,因此具有多方面的潜在应用价值,比如超分子组装体、智能涂料、网络或这些可能应用的组合。本文调研了有关梯度聚合物方面的研究工作,综述了几种梯度聚合物的合成方法,如活性阴离子聚合法、可控自由基聚合法(包括氮氧稳定自由基聚合、原子转移自由基聚合及可逆加成断裂链转移自由基聚合)和开环聚合法等,同时阐述了梯度聚合物的自组装及刺激响应行为,尤其是其独特的热和pH敏感性。此外,还对由两亲性嵌段聚合物和两亲性梯度聚合物自组装形成的聚集体的刺激响应行为进行了详细地论述和比较,并指出了梯度聚合物的应用前景和发展方向。
Stimuli-responsive polymers have attracted much attention in recent years due to their unique properties. These polymers can respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals, and cause the change in the physical or chemical properties of the system. Gradient polymers form a new class of materials that come into existence with the advent of living polymerization techniques. Unlike random and block polymers, gradient polymers vary their monomer compositions gradually along molecular chains. Among them, amphiphilic gradient polymers which consist of hydrophilic units and hydrophobic units, can self-assemble to form various aggregates in selective solvents. Amphiphilic gradient polymers reveal many potential applications in different fields, such as supramolecular assemblies, smart coatings, networks or some combination of these possibilities. This article summarizes recent research progress on the synthesis of gradient polymers, such as living anionic polymerizations, controlled/living radical polymerizations (including nitroxide-mediated polymerization, atom transfer radical polymerization and reversible addition-fragmentation chain transfer polymerization) and ring opening polymerizations. The second part discusses their self-assembly and stimuli-responsive behaviors, especially for distinctive thermo-sensitivity and pH-sensitivity. In particular, the divergent stimuli responsive behaviors of aggregates self-assembled from amphiphilic block polymers and amphiphilic gradient polymers are discussed and compared in detail. The development prospect of this research field and its potential applications are discussed as well in the last part.
Contents
1 Introduction
2 Synthesis of gradient polymers
2.1 Living anionic polymerization
2.2 Nitroxide mediated polymerization
2.3 Atom transfer radical polymerization
2.4 Reversible addition-fragmentation chain transfer polymerization
2.5 Cationic ring opening polymerization
2.6 Others
3 Self-assembly methods of gradient polymers
4 Stimuli responsive property of gradient polymer aggregates
4.1 Temperature responsive property of gradient polymer aggregates
4.2 pH responsive property of gradient polymer aggregates
5 Conclusion

中图分类号: 

()
[1] Feng A C, Yuan J Y. Macromol. Rapid Commun., 2014, 35:767.
[2] Hu J M, Zhang G Y, Ge Z S, Liu S Y. Prog. Polym. Sci., 2014, 39:1096.
[3] Massoumi B, Poorgholy N, Jaymand M. Int. J. Polymer. Mater. Polymer. Biomater., 2017, 66:38.
[4] Kim D W, Kim E J, Lee J Y, Hong S S, Sung W Y, Lim N S, Park C G, Kim K M. J. Am. Chem. Soc., 2010, 132:9908.
[5] Huang J B, Zhang H, Yu Y, Chen Y, Wang D, Zhang G Q, Zhou G C, Liu J J, Sun Z G, Sun D X, Lu Y, Zhong Y Q. Biomater., 2014, 35:550.
[6] 梁嘉美(Liang J M), 冯岸超(Feng A C), 袁金颖(Yuan J Y). 化学进展(Prog. Chem.), 2015, 5:522.
[7] Rahikkala A, Aseyev V, Tenhu H, Kauppinen E I, Raula J. Biomacromolecules, 2015, 16:2750.
[8] Wu Y B, Wang L, Guo B L, Ma P X. J. Mater. Chem., 2014, 2:3674.
[9] Cho S J, Jung S M, Kang M, Shin H S, Youk J H. Polymer, 2015, 69:95.
[10] Sun C, Wang D Y, Zhang M H, Ni Y X, Shen X H, Song Y C, Geng Z M, Xu W M, Liu F, Mao C. Analyst, 2015, 140:797.
[11] Feng A C, Liang J L, Ji J Z, Dou J B, Wang S F, Yuan J Y. Scientific Reports, 2016, 6:23624.
[12] Strandman S, Zarembo A, Darinskii A A, Laurinmaki P, Butcher S J, Vuorimaa E, Lemmetyinen H, Tenhu H. Macromolecules, 2008, 41:1651.
[13] Yu K, Han Y C. Soft Matter, 2009, 5:759.
[14] Pakula T, Matyjaszewski K. Macromol. Theory Simul., 1996, 5:987.
[15] Geoffrey H, Ralph M. US 3265765, 1966.
[16] Matyjaszewski K, Ziegler M J, Arehart S V, Greszta D, Pakula T. J. Phys. Org. Chem., 2000, 13:775.
[17] Beginn U. Colloid Polym. Sci., 2008, 286:1465.
[18] Kim J K, Maisha K G, Zhou H Y, Nguyen S B T, Torkelson J M. Macromolecules, 2005, 38:5461.
[19] Kim J K, Zhou H Y, Nguyen S B T, Torkelson J M. Polymer, 2006, 47:5799.
[20] Lefay C, Save M, Charleux B, Magnet S. Aust. J. Chem., 2006, 59:544.
[21] Tao Y, Kim J K, Torkelson J M. Polymer, 2006, 47:6773.
[22] Sun D C, Cho J H. Polymer, 2015, 66:192.
[23] Zheng Z N, Gao X, Luo Y W, Zhu S P. Macromolecules, 2016, 49:2179.
[24] Stéphane J, Juan A G, Annevalérie R, Philippe L, Sylvie T, Leibler L. Macromolecules, 2007, 40:2432.
[25] Strandman S, Zhu X X. Prog. Polym. Sci., 2015, 42:154.
[26] Okabe S, Fuse C, Sugihara S, Aoshima S, Shibayama M. Phys. B:Condens. Matter, 2006, 385:756.
[27] Okabe S, Seno K, Kanaoka S, Aoshima S, Shibayama M. Macromolecules, 2006, 39:1592.
[28] Okabe S, Seno K, Kanaoka S, Aoshima S, Shibayama M. Polymer, 2006, 47:7572.
[29] Seno K I, Tsujimoto I, Kanaoka S, Aoshima S. J. Polym. Sci., Part A:Polym. Chem., 2008, 46:6444.
[30] Dragan E S, Loghin D F A, Cocarta A I, Doroftei M. React. Funct. Polym., 2016, 105:66.
[31] Lauber L, Santarelli J, Boyron O, Chassenieux C, Colombani O, Nicolai T. Macromolecules, 2017, 50:416.
[32] Niskanen J, Tenhu H. Polym. Chem., 2017, 8:220.
[33] Victor R, Woisel P, Hoogenboom R. Mater. Today, 2016, 19:44.
[34] Yuan W Z, Chen X N. RSC Advances, 2016, 6:6802.
[35] García-Juan H, Nogales A, Blasco E, Martínez J C, Šics I, Ezquerra T A, Piñol M, Oriol L. Eur. Polym. J., 2016, 81:621.
[36] Giulbudagian M, Rancan F, Klossek A, Yamamoto K, Jurisch J, Neto V C, Schrade P, Bachmann S, Rühl E, Blume-Peytavi U. J. Controlled Release, 2016, 243:323.
[37] Li H Y, Williams G R, Wu J Z, Lv Y, Sun X Z, Wu H L, Zhu L M. Int. J. Pharm., 2017, 517:135.
[38] Sun K, Xu M R, Zhou K C, Nie H L, Quan J, Zhu L M. Mater. Sci. Eng. C, 2016, 68:172.
[39] Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski ?, Haladjova E, Dworak A. Prog. Polym. Sci., 2016, 68:35.
[40] Park J H, Han N, Song J E, Cho E C. Macromol. Rapid Commun., 2016, 38(3):1600621.
[41] Riabtseva A, Kaberov L I, Kucka J, Bogomolova A Y, Stepanek P, Filippov S K, Hruby M. Langmuir, 2017, 33(3), 764.
[42] Seeli D S, Prabaharan M. Carbohydr. Polym., 2017, 158:51.
[43] Saunders B R. Biomacromolecules, 2016, 17:2448.
[44] Bera A, Kumar C U, Parui P, Jewrajka S K. J. Membr. Sci., 2015, 481:137.
[45] Yu K, Ichiura H, Ohtani Y. J. Appl. Polym. Sci., 2017, 134:44530.
[46] Song C F, Yu S R, Liu C, Deng Y M, Xu Y T, Chen X L, Dai L Z. Mater. Sci. Eng. C, 2016, 62:45.
[47] Yokoe M, Yamauchi K, Long T E. J. Polym. Sci., Part A:Polym. Chem., 2016, 54:2302.
[48] Zhang Q L, Schattling P, Theato P, Hoogenboom R. Eur. Polym. J., 2015, 62:435.
[49] Kraus G, Rollmann K. J. Polym. Sci. Polym. Phys. Edition, 1976, 14:1133.
[50] Didier B, Vladimir C, Rebecca B, Craig J H. J. Am. Chem. Soc., 1999, 121:3904.
[51] Hawker C J, Anton W B, Harth E. Chem. Rev., 2001, 101:3661.
[52] Coessens V, Pintauer T, Matyjaszewski K. Prog. Polym. Sci., 2001, 26:337.
[53] Matyjaszewski K, Xia J H. Chem. Rev., 2001, 101:2921.
[54] Tsarevsky N V, Matyjaszewski K. Chem. Rev., 2007, 107:2270.
[55] Chiefari J, Chong Y, Ercole F, Krstina J, Jeffery J, Le T P, Mayadunne R T, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31:5559.
[56] Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2012, 65:985.
[57] Fujisawa T, Penlidis A. J. Macromol. Sci., Part A:Pure Appl. Chem., 2008, 45:115.
[58] Korotkov A, Chesnokova N. Polym. Sci. USSR, 1961, 2:284.
[59] Kuntz I. J. Polym. Sci., 1961, 54:569.
[60] Morton M, Ells F. J. Polym. Sci., 1962, 61:25.
[61] Spirin Y L, Arest-Yakubovich A, Polyakov D, Gantmakher A, Medvedev S. J. Polym. Sci., 1962, 58:1181.
[62] Spirin Y L, Polyakov D, Gantmakher A, Medvedev S. J. Polym. Sci., 1961, 53:233.
[63] Arest-Yakubovich A, Litvinenko G. Polym. Prepr., 1994, 35:544.
[64] Nakhmanovich B I, Arest-Yakubovich A A, Prudskova T N, Litvinenko G I. Macromol. Rapid Commun., 1996, 17:31.
[65] Sardelis K, Michels H, Allen G. Polymer, 1984, 25:1011.
[66] Sardelis K, Michels H, Allen G. Polymer, 1987, 28:244.
[67] Tsukahara Y, Nakamura N, Hashimoto T, Kawai H, Nagaya T, Sugimura Y, Tsuge S. Polym. J., 1980, 12:455.
[68] Kelley D J, Tobolsky A V. J. Am. Chem. Soc., 1959, 81:1597.
[69] Worsfold D. J. Polym. Sci., Part A:Polym. Chem., 1967, 5:2783.
[70] Hashimoto T, Tsukahara Y, Tachi K, Kawai H. Macromolecules, 1983, 16:648.
[71] Kraus G, Childers C, Gruver J. J. Appl. Polym. Sci., 1967, 11:1581.
[72] Kraus G, Rollmann K. Die Angew. Makromol. Chem., 1971, 16:271.
[73] Oberster A, Bebb R. Die Angew. Makromol. Chem., 1971, 16:297.
[74] Wofford C, Hsieh H. J. Polym. Sci., Part A:Polym. Chem., 1969, 7:461.
[75] Zelinski R, Childers C. Rubber Chem. Technol., 1968, 41:161.
[76] Ohlinger R, Bandermann F. Die Makromol. Chem., 1980, 181:1935.
[77] Braunecker W A, Matyjaszewski K. Prog. Polym. Sci., 2007, 32:93.
[78] Borisova O, Billon L, Zaremski M, Grassl B, Bakaeva Z, Lapp A, Stepanek P, Borisov O. Soft Matter, 2011, 7:10824.
[79] Borisova O, Billon L, Zaremski M, Grassl B, Bakaeva Z, Lapp A, Stepanek P, Borisov O. Soft Matter, 2012, 8:7649.
[80] Couvreur L, Charleux B, Guerret O, Magnet S. Macromol. Chem. Phys., 2003, 204:2055.
[81] Laruelle G, François J, Billon L. Macromol. Rapid Commun., 2004, 25:1839.
[82] Lefay C, Charleux B, Save M, Chassenieux C, Guerret O, Magnet S. Polymer, 2006, 47:1935.
[83] Borisova O V, Billon L, Richter R P, Reimhult E, Borisov O V. Langmuir, 2015, 31:7684.
[84] Hong S C, Lutz J F, Inoue Y, Strissel C, Nuyken O, Matyjaszewski K. Macromolecules, 2003, 36:1075.
[85] Lee H, Matyjaszewski K, Yu S, Sheiko S S. Macromolecules, 2005, 38:8264.
[86] Lee S B, Russell A J, Matyjaszewski K. Biomacromolecules, 2003, 4:1386.
[87] Lord S J, Sheiko S S, LaRue I, Lee H I, Matyjaszewski K. Macromolecules, 2004, 37:4235.
[88] Min K, Li M, Matyjaszewski K. J. Polym. Sci., Part A:Polym. Chem., 2005, 43:3616.
[89] Miura Y, Shibata T, Satoh K, Kamigaito M, Okamoto Y. J. Am. Chem. Soc., 2006, 128:16026.
[90] Neugebauer D, Theis M, Pakula T, Wegner G, Matyjaszewski K. Macromolecules, 2006, 39:584.
[91] Qin S H, Saget J, Pyun J, Jia S J, Kowalewski T, Matyjaszewski K. Macromolecules, 2003, 36:8969.
[92] Shinoda H, Matyjaszewski K, Okrasa L, Mierzwa M, Pakula T. Macromolecules, 2003, 36:4772.
[93] Börner H G, Duran D, Matyjaszewski K, Da Silva M, Sheiko S S. Macromolecules, 2002, 35:3387.
[94] Zhou Y N, Li J J, Zhang Q, Luo Z H. Langmuir, 2014, 30:12236.
[95] Hu Z Q, Zhang Z C. Macromolecules, 2006, 39:1384.
[96] Sun X Y, Luo Y W, Wang R, Li B G, Liu B, Zhu S P. Macromolecules, 2007, 40:849.
[97] Chen Y J, Luo W, Wang Y F, Sun C, Han M, Zhang C C. J. Colloid Interface Sci., 2012, 369:46.
[98] Gress A, Völkel A, Schlaad H. Macromolecules, 2007, 40:7928.
[99] Hoogenboom R, Fijten M W, Wijnans S, Am V D B, Thijs H M, Schubert U S. J. Comb. Chem., 2006, 8:145.
[100] Park J S, Kataoka K. Macromolecules, 2006, 39:6622.
[101] Park J S, Kataoka K. Macromolecules, 2007, 40:3599.
[102] Binder W H, Gruber H. Macromol. Chem. Phys., 2000, 201:949.
[103] Milonaki Y, Kaditi E, Pispas S, Demetzos C. J. Polym. Sci., Part A:Polym. Chem., 2012, 50:1226.
[104] Pippa N, Kaditi E, Pispas S, Demetzos C. Adv. Sci. Eng. Med., 2014, 6:642.
[105] Pippa N, Merkouraki M, Pispas S, Demetzos C. Int. J. Pharm., 2013, 450:1.
[106] Vlassi E, Pispas S. Macromol. Chem. Phys., 2015, 216:873.
[107] Bloksma M M, Hoeppener S, D'Haese C, Kempe K, Mansfeld U, Paulus R M, Gohy J F, Schubert U S, Hoogenboom R. Soft Matter, 2012, 8:165.
[108] Hoogenboom R, Lambermont-Thijs H M, Jochems M J, Hoeppener S, Guerlain C, Fustin C A, Gohy J F, Schubert U S. Soft Matter, 2009, 5:3590.
[109] Lobert M, Hoogenboom R, Fustin C A, Gohy J F, Schubert U S. J. Polym. Sci., Part A:Polym. Chem., 2008, 46:5859.
[110] Matsumoto K, Terashima T, Sugita T, Takenaka M, Sawamoto M. Macromolecules, 2016, 49:7917.
[111] Nakatani K, Terashima T, Sawamoto M. J. Am. Chem. Soc., 2009, 131:13600.
[112] Ogura Y, Terashima T, Sawamato M. Polym. Chem., 2017, 8:2299.
[113] Ogura Y, Terashima T, Sawamoto M. ACS Macro Letters, 2013, 2:985.
[114] Ogura Y, Terashima T, Sawamoto M. Macromolecules, 2017, 3:822.
[115] Hardeman T, Koeckelberghs G. Macromolecules, 2015, 48:6987.
[116] Zhao R B, Shea K J. ACS Macro Letters, 2015, 4:584.
[117] Tale S R, Yin L G, Reineke T M. Polym. Chem., 2014, 5:5160.
[118] Hurtgen M, Debuigne A, Fustin C A, Jérôme C, Detrembleur C. Macromolecules, 2011, 44:4623.
[119] Harrisson S, Ercole F, Muir B W. Polym. Chem., 2010, 1:326.
[120] Weaver L G, Stockmann R, Postma A, Thang S H. RSC Advances, 2016, 6:90923.
[121] Pietsch C, Mansfeld U, Guerrero-Sanchez C, Hoeppener S, Vollrath A, Wagner M, Hoogenboom R, Saubern S, Thang S H, Becer C R. Macromolecules, 2012, 45:9292.
[122] Zheng C, Huang H Y, He T B. Macromol. Rapid Commun., 2014, 35:309.
[123] Zhao Y, Luo Y W, Li B G, Zhu S P. Langmuir, 2011, 27:11306.
[124] Herzberger J, Kurzbach D, Werre M, Fischer K, Hinderberger D, Frey H. Macromolecules, 2014, 47:7679.
[125] Siddique A B, An J W, Kim H J, Park H, Lee Y J, Lee G C, Kim J. Macromolecular Research, 2017, 25:70.
[126] Li J J, Zhou Y N, Luo Z H. Soft Matter, 2012, 8:11051.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[4] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[5] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[6] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[7] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[8] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[9] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[10] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[11] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[12] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[13] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[14] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[15] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
阅读次数
全文


摘要

刺激响应梯度聚合物