English
新闻公告
More
化学进展 2017, Vol. 29 Issue (7): 785-795 DOI: 10.7536/PC170327 前一篇   后一篇

• 综述 •

苯酚直接羟基化制备苯二酚反应体系中催化剂的设计与性能

海莉1, 张天永1,2,3*, 李彬1,3*, 姜爽1,3*, 张夏1, 马骁媛1, 张光辉1   

  1. 1. 天津大学化工学院 天津市应用催化科学与工程重点实验室 天津 300354;
    2. 天津化学化工协同创新中心 天津 300072;
    3. 天津市功能精细化学品技术工程中心 天津 300354
  • 收稿日期:2017-03-17 修回日期:2017-06-02 出版日期:2017-07-15 发布日期:2017-06-22
  • 通讯作者: 张天永, 李彬, 姜爽 E-mail:tyzhang@tju.edu.cn;libin@tju.edu.cn;shuangjiang@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21276187),天津市自然科学基金项目(No.16JCYBJC20800)和天津市科技创新平台计划项目(No.14TXGCCX00017)资助

Design and Performance of Catalysts for Direct Hydroxylation of Phenol to Dihydroxybenzene

Li Hai1, Tianyong Zhang1,2,3*, Bin Li1,3*, Shuang Jiang1,3*, Xia Zhang1, Xiaoyuan Ma1, Guanghui Zhang1   

  1. 1. Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China;
    3. Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300354, China
  • Received:2017-03-17 Revised:2017-06-02 Online:2017-07-15 Published:2017-06-22
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21276187),the Natural Science Foundation of Tianjin (No.16JCYBJC20800) and the Tianjin Science and Technology Innovation Platform Program (No.14TXGCCX00017)
邻苯二酚和对苯二酚是重要的工业原料。苯酚一步羟基反应合成苯二酚的方法原子利用率高且节能高效,符合可持续发展的理念。以H2O2为氧化剂氧化苯酚合成苯二酚的工艺,流程简单、反应条件温和且绿色环保,成为催化合成领域的研究热点。在该反应中,苯酚的转化率和产物苯二酚的收率高低取决于催化剂的活性。本文综述了近几年在苯酚羟基化制备苯二酚反应中催化剂的研究进展。按照反应体系的不同,催化剂可被分为热催化反应体系中的催化剂和光催化反应体系中的催化剂。催化剂的催化性能主要以苯酚转化率、苯二酚的选择性和稳定性等方面作为评价指标。本文重点介绍了以H2O2为氧化剂的液相非均相催化体系中含金属催化剂的研究现状,并在最后对催化剂在苯酚一步羟基化制备苯二酚的反应体系中的制备与应用作了展望。
Catechol and hydroquinone are important industrial raw materials. The methods by which phenol hydroxylates to dihydroxybenzene (catechol and hydroquinone) by one step are high in utilization of reactant atoms, energy-saving and efficient, which are in line with the concept of sustainable development. Using H2O2 as oxidant in the oxidation process of phenol to dihydroxybenzene has become a hot spot in the field of catalytic synthesis because it is simple, environmentally-friendly and it can be done under mild reaction conditions. The catalyst plays a decisive role in this reaction system, and the phenol conversion and yield of the product greatly depend on the catalytic activity of catalyst. In this paper, the recent progresses in the catalysts which are used for the hydroxylation of phenol to dihydroxybenzene are reviewed. According to the reaction system, the catalysts are divided into the catalysts used in thermal-driven reaction systems and in photocatalytic reaction systems. The catalytic performances of the catalysts are mainly evaluated by the conversion of phenol, the selectivity of dihydroxybenzene and stability. The research of metal-containing catalysts in heterogeneous reaction systems using H2O2 as oxidant is mainly introduced. Finally, the development trends of application of catalysts in the reaction system of one-step hydroxylation of phenol with H2O2 are prospected.
Contents
1 Introduction
2 Catalysts used in thermal-driven reaction systems
2.1 Fe-containing catalysts
2.2 Cu-containing catalysts
2.3 Mixed metal oxide catalysts
2.4 Other metal-containing catalysts
2.5 TS-1 molecular sieve catalysts
2.6 Polyoxometalate compounds
3 Catalysts used in photocatalytic reaction systems
4 Conclusion

中图分类号: 

()
[1] 郝向英(Hao X Y), 刘芳(Liu F). 内蒙古师范大学学报:自然科学版(Journal of Inner Mongolia Normal University (Natural Science Edition)), 2007, 36(5):633.
[2] 熊春荣(Xiong C R), 林衍华(Lin Y H), 卢文奎(Lu W K).工业催化(Industrial Catalysis), 2003, 11(4):7.
[3] 姜红(Jiang H), 卢长娟(Lu C J), 陈日志(Chen R Z), 金万勤(Jin W Q). 现代化工(Modern Chemical Industry), 2009, 4:31.
[4] Varagnat J. Ind. Eng. Chem. Prod. Res. Dev., 1976, 15:212.
[5] Minosci F, Maggioni P. Chim. Ind., 1977, 59:239.
[6] Umemura S, Takamitsu N, Hamamoto T, Kuroda N. US 4078006, 1978.
[7] Perego C, Carati A, Ingallina P, Mantegazza M A, Bellussi G. Appl. Catal. A-Gen., 2001, 221:63.
[8] 舒世立(Shu S L), 张硕旭(Zhang S X). 化学通报(Chemistry Bulletin), 2015, 78(8):702.
[9] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. J. Am. Chem. Soc., 1992, 114:10834.
[10] Sheldon R A, Arends I W C E, Lempers H E B. Catal. Today, 1998, 41:387.
[11] Parida K M, Singha S, Sahoo P C. Catal. Lett., 2010, 136(1/2):155.
[12] Jiang Y Q, Lin K F, Zhang Y N, Liu J, Li G H, Sun J M, Xu X Z. Appl.Catal. A-Gen., 2012, 445:172.
[13] Li B S, Xu J Q, Liu J J, Zuo S L, Pan Z Y, Wu Z Y. J. Colloid Interface Sci., 2012, 366(1):114.
[14] Preethi M E L, Revathi S, Sivakumar T, Manikandan D,Divakar D, Rupa A V, Palanichami M.Catal. Lett., 2008, 120(1/2):56.
[15] Galarneau A, Barodawalla A, Pinnavaia T J. Nature, 1994,374:529.
[16] Yang S J, Liang G Z, Gu A J, Mao H H. Appl. Surf. Sci., 2013, 285:721.
[17] 赵玉梅(Zhao Y M). 化工进展(Chemical Industry and Engineering Progress), 2016, 35(z2):187.
[18] Chellal K, Bachari K, Sadi F. J. Clust. Sci., 2014, 25(2):523.
[19] Li J P H, Kennedy E, Stockenhuber M. Catal. Lett., 2014, 144(1):9.
[20] Parida K M, Rath D. J. Colloid Interface Sci., 2009, 340:209.
[21] Li B S, Wu K, Yuan T H, Han C Y, Xu J Q, Pang X M. Microporous Mesoporous Mater., 2012, 151:277.
[22] Samanta S, Giri S, Sastry P, Mal N, Manna A, Bhaumik A.Ind. Eng. Chem. Res., 2003, 42:3012.
[23] Wu C, Kong Y, Gao F, Wu Y, Lu Y N, Wang J, Dong L.Microporous Mesoporous Mater., 2008, 113:163.
[24] Liang X L, Yang R G, Li G Y, Hu C W. Microporous Mesoporous Mater., 2013, 182:62.
[25] Ahmed A E, Adam F. Microporous Mesoporous Mater., 2007, 103:284.
[26] Adam F, Andas J, Rahman I A. Chem. Eng. J., 2010, 165(2):658.
[27] Adam F, Wong J T, Ng E P. Chem. Eng. J., 2013, 214(1):63.
[28] Xu J, Ibrahim A R, Hu X H, Hong Y Z, Su Y Z, Wang H T, Li J. Microporous Mesoporous Mater., 2016, 231:1.
[29] Jin M M, Yang R G, Zhao M F, Li G Y, Hu C W. Ind. Eng. Chem. Res., 2014, 53(8):2932.
[30] 石国军(Shi G J), 陈宾宾(Chen B B), 许二岗(Xu E G).南京大学学报自然科学(Journal of Nanjing University(Natural Sciences)), 2015, 51(2):310.
[31] Zhang H, Zhang G Y, Bi X, Chen X T. J. Mater. Chem. A,2013, 1(19):5934.
[32] Hamdy M S, Mul G, Wei W, Anand R, Hanefeld U, Jansen J C, Moulijn J A. Catal. Today, 2005, 110:264.
[33] Gomes H T, Selvam P, Dapurkar S E, Figueiredo J L, Faria J L. Microporous Mesoporous Mater., 2005, 86:287.
[34] Dong Y L, Niu X Y, Zhu Y G, Yuan F L, Fu H J. Catal. Lett., 2011, 141(2):242.
[35] Zhang H L, Tang C J, Lv Y Y, Sun C Z, Gao F, Dong L, Chen Y. J. Colloid Interface Sci., 2012, 380(1):16.
[36] Karakhanov E A, Maximov A L, Kardasheva Y S, Skorkin V A, Kardashev S V, Predeina V V, Talanova M Y,Lurie-Luke E, Seeley J A, Cron S L. Appl. Catal. A:Gen., 2010, 385(1):62.
[37] Karakhanov E A, Maximov A L, Kardasheva Y S, Skorkin V A, Kardashev S V, Ivanova E A,Lurie-Luke E, Seeley J A, Cron S L. Ind. Eng. Chem. Res., 2010, 49(10):4607.
[38] Shi F W, Chen Y G, Sun L P, Zhang L, Hu J L. Catal. Commun., 2012, 25:102.
[39] Shi F W, Mu L, Yu P, Hu J L, Zhang L. J. Mol. Catal. A:Chem., 2014, 391:66.
[40] Shi F W, Zheng J L, Xu K, Zhang L, Hu J L. Catal. Commun., 2012, 28:23.
[41] 余海燕(Yu H Y), 刘全生(Liu Q S), 张顺(Zhang S), 杨柯利(Yang K L). 内蒙古工业大学学报(Journal of Inner Mongolia University of Technology), 2014, 4:267.
[42] 张敏(Zhang M), 肖质文(Xiao Z W), 何红运(He H Y).无机化学学报(Chinese Journal of Inorganic Chemistry), 2011, 27(3):427.
[43] 高肖汉(Gao X H), 吕雪川(Lv X C), 陈平(Chen P), 徐东辉(Xu D H), 苗永霞(Miao Y X). 石油学报(Acta Petrolei Sinica), 2012, 28(1):133.
[44] 刘慧慧(Liu H H), 蒋天龙(Jiang T L), 王艳芹(Wang Y Q).应用化学(Chinese Journal of Applied Chemistry),2014, 31(3):274.
[45] 于天(Yu T), 张思倩(Zhang S Q), 丁春敏(Ding C M), 赵振波(Zhao Z B). 化学通报(Chemistry Bulletin), 2015, 78(4):364.
[46] Zhao Y T, He G Y, Dai W, Chen H. Ind. Eng. Chem. Res., 2014, 53(32):12566.
[47] Xu T T, He G Y, Zhao Y T, Gu H Y, Jiang Z Y, Chen Q, Sun X Q, Chen H Q. Appl. Surf. Sci., 2016, 389:840.
[48] Zhang W J, Wang Y Z, Shen Y, Xie M J, Guo X F. Microporous Mesoporous Mater., 2016, 226:278.
[49] Xia C J, Long L H, Zhu B, Lin M, Shu X T. Catal. Commun., 2016, 80:49.
[50] Kumar A, Srinivas D. J. Mol. Catal. A:Chem., 2013, 368:112.
[51] Izgorodin A, Izgorodina E, MacFarlane D R. Energy Environ. Sci., 2012, 5(11):9496.
[52] Takashima T, Hashimoto K, Nakamura R. J. Am. Chem. Soc., 2012, 134(44):18153.
[53] Cheng F Y, Shen J, Peng B, Pan Y D, Tao Z L, Chen J. Nat. Chem., 2011, 3(1):79.
[54] Kim K W, Kim S M, Choi S, Kim J, Lee I S. ACS Nano, 2012, 6(6):5122.
[55] Nakayama M, Shamoto M, Kamimura A. Chem. Mater., 2010, 22(21):5887.
[56] Meng Y, Genuino H C, Kuo C H, Huang H, Chen S Y, Zhang L, Rossi A, Suib S L. J. Am. Chem. Soc., 2013, 135(23):8594.
[57] Parida K M, Dash S S, Singha S. Appl. Catal. A-Gen., 2008, 351(1):59.
[58] Zhang X G, Liu P, Wu Y J, Yao Y, Wang J. Catal. Lett. 2010, 137(3/4):210.
[59] He Z, Wu J, Gao B Y, He H Y. ACS Appl. Mater. Interfaces, 2015, 7(4):2424.
[60] 吴娟(Wu J), 高丙莹(Gao B Y), 何红运(He H Y). 应用化学(Chinese Journal of Applied Chemistry), 2014,31(11):1302.
[61] Vijayan P, Anitha P, Rajeshkumar M, Viswanathamurthi P, Sugumar P. Polyhedron, 2017, 124:77.
[62] 郑亚清(Zheng Y Q), 陶文波(Tao W B), 丁克鸿(Ding K H).工业催化(Industrial Catalysis), 2014, 22(4):287.
[63] Andas J, Adam F, Rahman I A. Appl. Surf. Sci., 2014, 315:154.
[64] Nethravathi B P, Reddy K R, Mahendra K N. J. Porous Mater., 2014, 21(3):285.
[65] 李辉(Li H). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2013.
[66] 朱玉镇(Zhu Y Z), 沈健(Shen J). 化学工程(Chemical Engineering), 2014, 42(12):59.
[67] Pithakratanayothin S, Tongsri R, Chaisuwan T, Wongkasemjit S. Mater. Chem. Phys., 2016, 181:452.
[68] Huybrechts D R C, De Bruycker L, Jacobs P A. Nature, 1990, 345:240.
[69] Clerici M G, Bellussi G, Romano U. J. Catal., 1991, 129:159.
[70] Martens J A, Buskens P, Jacobs P A, van der Pol A, van Hooff J H C, Ferrini C, Kouwenhoven H W, Kooyman P J, van Bekkum H. Appl. Catal.A-Gen.,1993, 99:71.
[71] Mantegazza M A, Leofanti G, Petrini G, Padovan M, Zecchina A, Bordiga S. Stud. Surf. Sci. Catal., 1994, 82:541.
[72] Wu P, Komatsu T, Yashima T. J. Phys. Chem. B, 1998, 102:9297.
[73] Klaewkla R, Kulprathipanja S, Rangsunvigit P, Rirksomboon T, Rathbun W, Nemeth L. Chem. Eng. J., 2007, 129(1):21.
[74] Zuo Y, Song W C, Dai C Y, He Y P, Wang M L, Wang X S, Guo X W. Appl. Catal. A-Gen., 2013, 453:272.
[75] Zou H B, Sun Q L, Fan D Y, Fu W W, Liu L J, Wang R W. Catalysts, 2015, 5(4):2134.
[76] Kong Z P, Yue B, Deng W, Zhu K K, Yan M G, Peng Y F, He H Y. Appl. Organomet. Chem., 2014, 28(4):239.
[77] Jiang H, Jiang X L, She F, Wang Y, Xing W H, Chen R Z. Chem. Eng. J., 2014, 239:373.
[78] 姜红(Jiang H), 孟烈(Meng L), 陈日志(Chen R Z), 金万勤(Jin W Q), 邢卫红(Xing W H). 南京工业大学学报(自科版)(Journal of Nanjing University of Technology(Natural Science Edition)), 2012, 34(5):16.
[79] 姜修龙(Jiang X L), 佘飞(She F), 姜红(Jiang H), 陈日志(Chen R Z),邢卫红(Xing W H). 化学工程(Chemical Engineering), 2014, 42(2):69.
[80] 王东琴(Wang D Q), 李裕(Li Y), 柳来栓(liu L S), 李军平(Li J P), 张茹(Zhang R). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33(12):2722.
[81] Kozhevnikov I V. Chem. Rev., 1998, 98:171.
[82] Yu J F, Yang P P, Yang Y, Wu T H, Parquette J R. Catal. Commun., 2006, 7:153.
[83] Parida K M, Mallick S. J. Mol. Catal. A:Chem., 2008, 279:104.
[84] 胡玉才(Hu Y C). 石油化工高等学校学报(Journal of Petrochemical Universities), 2005, 18:11.
[85] Wang J M, Yan L, Qian G, Lv G M, Li G X, Suo J S, Wang X L. React. Kinet. Catal. Lett., 2007, 91(1):111.
[86] Pamin K, Poltowicz J, Pronczuk M, Basag S, Maciejewskaa J,Krysciak-Czerwenkaa J, Tokarz-Sobieraja R. Catal. Today, 2015, 257(1):80.
[87] Lang X J, Ji H W, Chen C C, Ma W H, Zhao J C. Angew. Chem. Int. Ed., 2011, 123:4020.
[88] Lang X J, Ma W H, Zhao Y B, Chen C C, Ji H W, Zhao J C. Chem. -Eur. J., 2012, 18:2624.
[89] Li Y, Ji H W, Chen C C, Ma W H, Zhao J C. Angew. Chem. Int. Ed., 2013, 52:12636.
[90] Lang X J, Zhao J C, Chen X D. Angew. Chem. Int. Ed., 2016, 55:4697.
[91] Wang Q, Zhang M, Chen C C, Ma W H, Zhao J C. Angew.Chem. Int. Ed., 2010, 49:7976.
[92] Zhang M, Chen C C, Ma W H, Zhao J C. Angew. Chem. Int. Ed., 2008, 47:9730.
[93] Lv K L, Guo X J, Wu X F, Li Q, Ho W K, Li M, Ye H P, Du D Y. Appl. Catal. B-Environ., 2016, 199:405.
[94] 付宁宁(Fu N N), 沈健(Shen J). 精细化工(Fine Chemicals), 2015, 32(6):662.
[95] Shi H X, Zhang T Y, Li B, Wang X, He M, Qiu M Y. Catal. Commun., 2011, 12(11):1022.
[96] 史慧贤(Shi H X). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2011.
[97] Shi H X, Zhang T Y, An T C, Li B, Wang X. Curr. Org. Chem., 2012, 16(24):3002.
[98] 商希礼(Shang X L). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2013.
[99] Brezesinski K, Ostermann R, Hartmann P, Perlich J, Brezesinski T. Chem. Mater., 2010, 22:3079.
[100] Wang Y, Wen Y Y, Ding H M, Shan Y K. J. Mater. Sci., 2010, 45:1385.
[101] He W D, Qin W, Wu X H, Ding X B, Chen L, Jiang Z H. Thin Solid Films, 2007, 515:5362.
[102] Naik B, Parida K M, Behera G C. ChemCatChem, 2011, 3(2):311.
[103] Das D P, Barik R K, Das J, Mohapatra P, Parida K M. RSC Adv., 2012, 2(19):7377.
[104] Jiang S, Zhang T Y, Zhang X, Zhang G, Li B. Dalton Trans., 2015, 44(38):16708.
[105] Wang Y H, Zhang T Y, Li B, Jiang S, Sheng L. RSC Adv., 2015, 5(37):29022.
[106] Wang X, Zhang T Y, Yang Q S, Jiang S, Li B. Eur. J. Inorg. Chem., 2015, 5:817.
[107] Zhang X, Zhang T Y, Li B, Zhang G H, Hai L, Jiang S.RSC Adv., 2017, 7(1):2934.
[108] Wang Y H, Yang Y W, Zhang T Y, Zhang X, Jiang S,Zhang G H, Li B. J. Organomet. Chem., 2016, 825/826:55.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.