English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 47-74 DOI: 10.7536/PC161222 前一篇   后一篇

• 综述 •

配位超分子自组装

潘梅, 韦张文, 徐耀维, 苏成勇*   

  1. 中山大学化学学院 广州 510275
  • 收稿日期:2016-12-13 修回日期:2017-01-01 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 苏成勇 E-mail:cesscy@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21573291,21373276)资助

Coordination Assembly of Metal-Organic Materials

Mei Pan, Zhangwen Wei, Yaowei Xu, Cheng-Yong Su*   

  1. School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
  • Received:2016-12-13 Revised:2017-01-01 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21573291, 21373276).
配位超分子化学是研究存在配位相互作用的超分子体系的化学,其中配位键对超分子体系的形成和功能具有重要作用。配位超分子材料,又称为金属-有机材料(metal-organic materials,MOMs),既包括具有特定外形、尺寸或空腔的分立、寡聚配合物(如配位多边形和多面体、螺旋体、轮烷、索烃等),也包含由数目不定的组分自发组装而成的无限/多聚配位聚集体(如配位聚合物、金属-有机框架和金属-有机凝胶)等。配位超分子化学的发展很大程度上依赖于配位超分子自组装方法的发展,而各种可设计、可预测、可调控的精准巧妙的配位自组装策略的涌现,不但将超分子化学推向前所未有的水平,同时也极大地丰富和提升了现代超分子化学合成方法与技术。本文主要介绍目前常见的一些配位超分子体系的制备与合成方法,特别是定向合成不同类型的配位超分子体系的组装策略与应用实例。
Supramolecular coordination chemistry is the domain of inorganic chemistry beyond the molecules, in which coordination interactions play important roles in self-assembly and properties of coordination supramolecular materials, also called metal-organic materials (MOMs). The MOMs are mainly divided into two different types:discrete or oligomeric coordination entities showing specific shapes, sizes or cavities (such as molecular polygons/polyhedra, helicates, rotaxanes, catenanes, etc.), and infinite/polymeric coordination ensembles assembled from a variable number of components (such as coordination polymers, metal-organic frameworks, metal-organic gels, etc.). With the burgeon of supramolecular coordination chemistry, various designable, predictable and tunable strategies of coordination-driven self-assembly have been developed, which propel the field of supramolecular coordination itself, as well as the modern supramolecular syntheses, toward an unprecendently high level. This review mainly introduces a number of common strategies for the preparation of MOMs, especially those for controllable assembly of MOMs with distinctive structural features.

Contents
1 Introduction
2 Synthetic methods for metal-organic materials
2.1 Room temperature syntheses and conventional heating method
2.2 Hydrothermal/solvothermal/ion-thermal method
2.3 Batch syntheses and high-throughout syntheses
2.4 Microwave/electrochemical/mechanochemical/sonochemical method
2.5 In-situ syntheses
2.6 Crystal transformation
2.7 Post-modification
3 Nanoscale sysnthese and surface assembly of metal-organic materials
3.1 Synthetic methods and influence factors
3.2 Assembly of nanoscale metal-organic materials with different dimensions
4 Assembling strategies for metal-organic materials with distinctive structural features
4.1 Crystal engineering and metal-organic frameworks (MOFs)
4.2 Molecular architecture and metal-organic containers (MOCs)
4.3 Rotaxanes, catenanes, other entangled structures and molecular machines
4.4 Helicates and helices
4.5 Metal-organic gels (MOGs)
5 Conclusion and outlook

中图分类号: 

()
[1] 苏成勇(Su C Y), 潘梅(Pan M). 配位超分子结构化学基础与进展(Basis and Progress of the Structural Chemistry of Coordination Supramolecules). 北京:科学出版社(Beijing:China Science Publishing), 2010.
[2] Cui Y J, Yue Y F, Qian G D, Chen B L. Chem. Rev., 2012, 112(2):1126.
[3] Stock N, Biswas S. Chem. Rev., 2012, 112(2):933.
[4] Hoskins B F, Robson R. J. Am. Chem. Soc., 1990, 112(4):1546.
[5] 孙为银(Sun W Y). 配位化学(Coordination Chemistry). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2004. 41.
[6] Rabenau A. Angew. Chem. Int. Ed., 1985, 24(12):1026.
[7] Jin K, Huang X Y, Pang L, Li J, Appel A, Wherland S. Chem. Commun., 2002, (23):2872.
[8] Mueller U, Puetter H, Hesse M, Wessel H. WO 049892, 2005.
[9] Chang J S. Korea Research Institute of Chemical Technology, Private Communication.
[10] Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'keeffe M, Yaghi O M. Science, 2008, 319(5865):939.
[11] Biemmi E, Christian S, Stock N, Bein T. Microporous Mesoporous Mater., 2009, 117(1/2):111.
[12] Bae Y S, Mulfort K L, Frost H, Ryan P, Punnathanam S, Broadbelt L J, Hupp J T, Snurr R Q. Langmuir, 2008, 24(16):8592.
[13] Jhung S H, Lee J H, Chang J S B. Kor. Chem. Soc., 2005, 26(6):880.
[14] Jhung S H, Lee J H, Yoon J W, Serre C, Férey G, Chang J S. Adv. Mater., 2007, 19(1):121.
[15] Ameloot R, Stappers L, Fransaer J, Alaerts L, Sels B F, de Vos D E. Chem. Mater., 2009, 21(13):2580.
[16] Boldyrev V V, Tká D? ová K. J. Mater. Synth. Proces, 2000, 8(3):121.
[17] Pichon A, Lazuen-Garay A, James S L. CrystEngComm, 2006, 8(3):211.
[18] Friscic T. J. Mater. Chem., 2010, 20(36):7599.
[19] Friš?i? T, Fabian L. CrystEngComm, 2009, 11(5):743.
[20] Friš?i? T, Reid D G, Halasz I, Stein R S, Dinnebier R E, Duer M J. Angew. Chem. Int. Ed., 2010, 49(4):712.
[21] Shono T, Mingos D M P, Baghurst D R, Lickiss P D. Novel Energy Sources for Reactions. In The New Chemistry, Hall N, Ed. Cambridge:The Press Syndicate of the University of Cambridge, 2000. Chapter 4.
[22] Qiu L G, Li Z Q, Wu Y, Wang W, Xu T, Jiang X. Chem. Commun., 2008, (31):3642.
[23] Kim J, Yang S T, Choi S B, Sim J, Kim J, Ahn W S. J. Mater. Chem., 2011, 21(9):3070.
[24] He Q T, Li X P, Liu Y, Yu Z Q, Wang W, Su C Y. Angew. Chem. Int. Ed., 2009, 48(33):6156.
[25] Ma W H, Li J, Tao X, He J, Xu Y M, Yu J C, Zhao J C. Angew. Chem. Int. Ed., 2003, 42(9):1029.
[26] Zhang X M, Tong M L, Gong M L, Lee H K, Luo L, Li K F, Tong Y X, Chen X M. Chem. Eur. J., 2002, 8(14):3187.
[27] Xiao D R, Hou Y, Wang E B, Wang S T, Li Y G, De G, Xu L, Hu C W. J. Mol. Struct., 2003, 659(1/3):13.
[28] Zheng S L, Zhang J P, Wong W T, Chen X M. J. Am. Chem. Soc., 2003, 125(23):6882.
[29] Li G B, Liu J M, Yu Z Q, Wang W, Su C Y. Inorg. Chem., 2009, 48(18):8659.
[30] Liu C M, Gao S, Kou H Z. Chem. Commun., 2001, (17):1670.
[31] Xiao D R, Hou Y, Wang E B, Lü J, Li Y G, Xu L, Hu C W. Inorg. Chem. Commun., 2004, 7(3):437.
[32] Gillard R D. Coord. Chem. Rev., 1975, 16(1/2):67.
[33] Zhao D, Yuan D Q, Yakovenko A, Zhou H C. Chem. Commun., 2010, 46(23):4196.
[34] Cheng J K, Yao Y G, Zhang J, Li Z J, Cai Z W, Zhang X Y, Chen Z N, Chen Y B, Kang Y, Qin Y Y, Wen Y H. J. Am. Chem. Soc., 2004, 126(25):7796.
[35] Zhang X M, Hou J J, Wu H S. Dalton Trans., 2004, (21):3437.
[36] Hu X X, Xu J Q, Cheng P, Chen X Y, Cui X B, Song J F, Yang G D, Wang T G. Inorg. Chem., 2004, 43(7):2261.
[37] Hu X X, Pan C L, Xu J Q, Cui X B, Yang G D, Wang T G. Eur. J. Inorg. Chem., 2004, 2004(7):1566.
[38] Liu F C, Duan L Y, Li Y G, Wang E B, Wang X L, Hu C W, Xu L. Inorg. Chim. Acta, 2004, 357(5):1355.
[39] Yan Y, Wu C D, Lu C Z. Z. Anorg. Allg. Chem., 2003, 629(11):1991.
[40] Hagrman D, Zubieta J. Chem. Commun., 1998, (18):2005.
[41] Hagrman D, Zapf P J, Zubieta J. Chem. Commun., 1998, (12):1283.
[42] Zhuang C F, Zhang J Y, Wang Q, Chu Z H, Fenske D, Su C Y. Chem. Eur. J., 2009, 15(31):7578.
[43] Hamon L, Serre C, Devic T, Loiseau T, Millange F, Férey G, Weireld G D. J. Am. Chem. Soc., 2009, 131(25):8775.
[44] Ferey G, Serre C. Chem. Soc. Rev., 2009, 38(5):1380.
[45] Krause S, Bon V, Senkovska I, Stoeck U, Wallacher D, Tobbens D M, Zander S, Pillai R S, Maurin G, Coudert F X, Kaskel S. Nature, 2016, 532(7599):348.
[46] Chen C X, Wei Z W, Jiang J J, Fan Y Z, Zheng S P, Cao C C, Li Y H, Fenske D, Su C Y. Angew. Chem. Int. Ed., 2016, 55(34):9932.
[47] Cohen S M. Chem. Rev., 2012, 112(2):970.
[48] Deria P, Mondloch J E, Karagiaridi O, Bury W, Hupp J T, Farha O K. Chem. Soc. Rev., 2014, 43(16):5896.
[49] Wang Z Q, Tanabe K K, Cohen S M. Inorg. Chem., 2009, 48(1):296.
[50] Garibay S J, Wang Z Q, Cohen S M. Inorg. Chem., 2010, 49(17):8086.
[51] Volkringer C, Cohen S M. Angew. Chem. Int. Ed., 2010, 49(27):4644.
[52] Britt D, Lee C, Uribe-Romo F J, Furukawa H, Yaghi O M. Inorg. Chem., 2010, 49(14):6387.
[53] Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O'keeffe M, Yaghi O M. Acc. Chem. Res., 2010, 43(1):58.
[54] Jiang H L, Feng D W, Liu T F, Li J R, Zhou H C. J. Am. Chem. Soc., 2012, 134(36):14690.
[55] Goto Y, Sato H, Shinkai S, Sada K. J. Am. Chem. Soc., 2008, 130(44):14354.
[56] Burrows A D, Frost C G, Mahon M F, Richardson C. Chem. Commun., 2009, (28):4218.
[57] Jones S C, Bauer C A. J. Am. Chem. Soc., 2009, 131(35):12516.
[58] Kim M, Garibay S J, Cohen S M. Inorg. Chem., 2011, 50(3):729.
[59] Meilikhov M, Yusenko K, Fischer R A. J. Am. Chem. Soc., 2009, 131(28):9644.
[60] Mir M H, Koh L L, Tan G K, Vittal J J. Angew. Chem. Int. Ed., 2010, 49(2):390.
[61] Bernt S, Guillerm V, Serre C, Stock N. Chem. Commun., 2011, 47(10):2838.
[62] Yamada T, Kitagawa H. J. Am. Chem. Soc., 2009, 131(18):6312.
[63] Deshpande R K, Minnaar J L, Telfer S G. Angew. Chem. Int. Ed., 2010, 49(27):4598.
[64] Lun D J, Waterhouse G I N, Telfer S G. J. Am. Chem. Soc., 2011, 133(15):5806.
[65] Sato H, Matsuda R, Sugimoto K, Takata M, Kitagawa S. Nat. Mater., 2010, 9(8):661.
[66] Shultz A M, Farha O K, Adhikari D, Sarjeant A A, Hupp J T, Nguyen S T. Inorg. Chem., 2011, 50(8):3174.
[67] (a)Wu C D, Hu A G, Zhang L, Lin W B. J. Am. Chem. Soc., 2005, 127(25):8940.; (b)Bloch E D, Britt D, Lee C, Doonan C J, Uribe-Romo F J, Furukawa H, Long J R, Yaghi O M. J. Am. Chem. Soc., 2010, 132(41):14382.
[68] Chun J, Jung I G, Kim H J, Park M, Lah M S, Son S U. Inorg. Chem., 2009, 48(14):6353.
[69] Chun J, Lee H S, Jung I G, Lee S W, Kim H J, Son S U. Organometallics., 2010, 29(7):1518.
[70] Zhou X P, Xu Z T, Zeller M, Hunter A D. Chem. Commun., 2009, (36):5439.
[71] Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283(5405):1148.
[72] Farha O K, Mulfort K L, Hupp J T. Inorg. Chem., 2008, 47(22):10223.
[73] Ingleson M J, Heck R, Gould J A, Rosseinsky M J. Inorg. Chem., 2009, 48(21):9986.
[74] Nguyen J G, Tanabe K K, Cohen S M. CrystEngComm, 2010, 12(8):2335.
[75] Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Férey G. Angew. Chem. Int. Ed., 2008, 47(22):4144.
[76] Demessence A, D'alessandro D M, Foo M L, Long J R. J. Am. Chem. Soc., 2009, 131(25):8784.
[77] Yuan S, Chen Y P, Qin J S, Lu W G, Wang X, Zhang Q, Bosch M, Liu T F, Lian X Z, Zhou H C. Angew. Chem. Int. Ed., 2015, 54(49):14696.
[78] Ameloot R, Aubrey M, Wiers B M, Gómora-Figueroa A P, Patel S N, Balsara N P, Long J R. Chem. Eur. J., 2013, 19(18):5533.
[79] López-Maya E, Montoro C, Rodríguez-Albelo L M, Aznar Cervantes S D, Lozano-Pérez A A, Cenís J L, Barea E, Navarro J A R. Angew. Chem. Int. Ed., 2015, 54(23):6790.
[80] Li L J, Liao P Q, He C T, Wei Y S, Zhou H L, Lin J M, Li X Y, Zhang J P. J. Mater. Chem. A, 2015, 3(43):21849.
[81] Liu T F, Zou L F, Feng D W, Chen Y P, Fordham S, Wang X, Liu Y Y, Zhou H C. J. Am. Chem. Soc., 2014, 136(22):7813.
[82] Park J, Feng D W, Zhou H C. J. Am. Chem. Soc., 2015, 137(4):1663.
[83] Karagiaridi O, Bury W, Tylianakis E, Sarjeant A A, Hupp J T, Farha O K. Chem. Mater., 2013, 25(17):3499.
[84] Liu C, Zeng C J, Luo T Y, Merg A D, Jin R, Rosi N L. J. Am. Chem. Soc., 2016, 138(37):12045.
[85] Kim M, Cahill J F, Su Y X, Prather K A, Cohen S M. Chem. Sci., 2012, 3(1):126.
[86] Deria P, Mondloch J E, Tylianakis E, Ghosh P, Bury W, Snurr R Q, Hupp J T, Farha O K. J. Am. Chem. Soc., 2013, 135(45):16801.
[87] Hong D H, Suh M P. Chem. Eur. J., 2014, 20(2):426.
[88] Das S, Kim H, Kim K. J. Am. Chem. Soc., 2009, 131(11):3814.
[89] Yao Q X, Sun J L, Li K, Su J, Peskov M V, Zou X D. Dalton Trans., 2012, 41(14):3953.
[90] Wei Z W, Lu W G, Jiang H L, Zhou H C. Inorg. Chem., 2013, 52(3):1164.
[91] Yang J, Wang X Q, Dai F N, Zhang L L, Wang R M, Sun D F. Inorg. Chem., 2014, 53(19):10649.
[92] Sun D R, Liu W J, Qiu M, Zhang Y F, Li Z H. Chem. Commun., 2015, 51(11):2056.
[93] Kim M, Cahill J F, Fei H, Prather K A, Cohen S M. J. Am. Chem. Soc., 2012, 134(43):18082.
[94] (a)Yuan S, Lu W G, Chen Y P, Zhang Q, Liu T F, Feng D W, Wang X, Qin J S, Zhou H C. J. Am. Chem. Soc., 2015, 137(9):3177.; (b)Yuan S, Chen Y P, Qin J S, Lu W G, Zou L F, Zhang Q, Wang X, Sun X, Zhou H C. J. Am. Chem. Soc., 2016, 138(28):8912.
[95] Yuan S, Zou L F, Li H X, Chen Y P, Qin J S, Zhang Q, Lu W G, Hall M B, Zhou H C. Angew. Chem. Int. Ed., 2016, 55(36):10776.
[96] Doonan C J, Morris W, Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131(27):9492.
[97] Park J, Feng D W, Zhou H C. J. Am. Chem. Soc., 2015, 137(36):11801.
[98] Zou L F, Feng D W, Liu T F, Chen Y P, Yuan S, Wang K C, Wang X, Fordham S, Zhou H C. Chem. Sci., 2016, 7(2):1063.
[99] Liu C, Luo T Y, Feura E S, Zhang C, Rosi N L. J. Am. Chem. Soc., 2015, 137(33):10508.
[100] Ma M Y, Gross A, Zacher D, Pinto A, Noei H, Wang Y M, Fischer R A, Metzler-Nolte N. CrystEngComm, 2011, 13(8):2828.
[101] Huang L M, Wang H T, Chen J X, Wang Z B, Sun J Y, Zhao D Y, Yan Y S. Microporous Mesoporous Mater., 2003, 58(2):105.
[102] Ni Z, Masel R I. J. Am. Chem. Soc., 2006, 128(38):12394.
[103] Son W J, Kim J, Kim J, Ahn W S. Chem. Commun., 2008, (47):6336.
[104] Uemura T, Hoshino Y, Kitagawa S, Yoshida K, Isoda S. Chem. Mater., 2006, 18(4):992.
[105] Ameloot R, Vermoortele F, Vanhove W, Roeffaers M B J, Sels B F, de Vos D E. Nat. Chem., 2011, 3(5):382.
[106] Huxford R C, Della Rocca J, Lin W B. Curr. Opin. Chem. Biol., 2010, 14(2):262.
[107] Vallet-Regí M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46(40):7548.
[108] Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J S, Hwang Y K, Marsaud V, Bories P N, Cynober L, Gil S, Férey G, Couvreur P, Gref R. Nat. Mater., 2010, 9(2):172.
[109] Wang S H, Fan Y N, Teng J, Fan Y Z, Jiang J J, Wang H P, Grützmacher H, Wang D W, Su C Y. Small, 2016, 12(41):5702.
[110] Rieter W J, Taylor K M L, An H, Lin W L, Lin W B. J. Am. Chem. Soc., 2006, 128(28):9024.
[111] Puigmartí-Luis J, Rubio-Martínez M, Hartfelder U, Imaz I, Maspoch D, Dittrich P S. J. Am. Chem. Soc., 2011, 133(12):4216.
[112] Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S. Angew. Chem. Int. Ed., 2009, 48(26):4739.
[113] Jahan M, Bao Q L, Yang J X, Loh K P. J. Am. Chem. Soc., 2010, 132(41):14487.
[114] Arnold M, Kortunov P, Jones D J, Nedellec Y, Kärger J, Caro J. Eur. J. Inorg. Chem., 2007, 2007(1):60.
[115] Betard A, Zacher D, Fischer R A. CrystEngComm, 2010, 12(11):3768.
[116] Pan C, Nan J P, Dong X L, Ren X M, Jin W Q. J. Am. Chem. Soc., 2011, 133(32):12330.
[117] Yoo Y, Jeong H K. Chem. Commun., 2008, (21):2441.
[118] Liu Y Y, Ng Z F, Khan E A, Jeong H K, Ching C B, Lai Z P. Microporous Mesoporous Mater., 2009, 118(1/3):296.
[119] Falcaro P, Hill A J, Nairn K M, Jasieniak J, Mardel J I, Bastow T J, Mayo S C, Gimona M, Gomez D, Whitfield H J, Ricò R, Patelli A, Marmiroli B, Amenitsch H, Colson T, Villanova L, Buso D. Nat. Commun., 2011, 2:237.
[120] Aguado S, Canivet J, Farrusseng D. Chem. Commun., 2010, 46(42):7999.
[121] Shoaee M, Anderson M W, Attfield M P. Angew. Chem. Int. Ed., 2008, 47(44):8525.
[122] Munuera C, Shekhah O, Wang H, Woll C, Ocal C. Phys. Chem. Chem. Phys., 2008, 10(48):7257.
[123] Meilikhov M, Yusenko K, Schollmeyer E, Mayer C, Buschmann H J, Fischer R A. Dalton Trans., 2011, 40(18):4838.
[124] Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li Y S, Caro J. Chem. Mater., 2011, 23(8):2262.
[125] Li Y S, Liang F Y, Bux H, Feldhoff A, Yang W S, Caro J. Angew. Chem. Int. Ed., 2010, 49(3):548.
[126] Li Y S, Bux H, Feldhoff A, Li G L, Yang W S, Caro J. Adv. Mater., 2010, 22(30):3322.
[127] Guo H L, Zhu Y Z, Qiu S L, Lercher J A, Zhang H J. Adv. Mater., 2010, 22(37):4190.
[128] Horcajada P, Serre C, Grosso D, Boissière C, Perruchas S, Sanchez C, Férey G. Adv. Mater., 2009, 21(19):1931.
[129] Demessence A, Horcajada P, Serre C, Boissiere C, Grosso D, Sanchez C, Ferey G. Chem. Commun., 2009, (46):7149.
[130] Demessence A, Boissiere C, Grosso D, Horcajada P, Serre C, Ferey G, Soler-Illia G J A, Sanchez C. J. Mater. Chem., 2010, 20(36):7676.
[131] Furukawa S, Hirai K, Takashima Y, Nakagawa K, Kondo M, Tsuruoka T, Sakata O, Kitagawa S. Chem. Commun., 2009,(34):5097.
[132] Zou X Q, Zhu G S, Hewitt I J, Sun F X, Qiu S L. Dalton Trans., 2009, (16):3009.
[133] Liu J, Sun F X, Zhang F, Wang Z, Zhang R, Wang C, Qiu S L. J. Mater. Chem., 2011, 21(11):3775.
[134] Qiu S L, Xue M, Zhu G S. Chem. Soc. Rev., 2014, 43(16):6116.
[135] Desiraju G R. Crystal Engineering:The Design of Organic Solids. Amsterdam:Elsevier, 1989.
[136] Hosseini M W. Acc. Chem. Res., 2005, 38(4):313.
[137] Cantrill S J, Pease A R, Stoddart J F. J. Chem. Soc. Dalton, 2000, (21):3715.
[138] Li H L, Eddaoudi M, O'keeffe M, Yaghi O M. Nature, 1999, 402(6759):276.
[139] Fujita M, Umemoto K, Yoshizawa M, Fujita N, Kusukawa T, Biradha K. Chem. Commun., 2001, (6):509.
[140] Leininger S, Olenyuk B, Stang P J. Chem. Rev., 2000, 100(3):853.
[141] Caulder D L, Raymond K N. Acc. Chem. Res., 1999, 32(11):975.
[142] Stricklen P, Verkade J. J. Am. Chem. Soc., 1983, 105(8):2494.
[143] Fujita M. Chem. Soc. Rev., 1998, 27(6):417.
[144] Stang P J, Olenyuk B. Acc. Chem. Res., 1997, 30(12):502.
[145] Swiegers G F, Malefetse T J. Coord. Chem. Rev., 2002, 225(1/2):91.
[146] Chen C L, Zhang J Y, Su C Y. Eur. J. Inorg. Chem., 2007, 2007(19):2997.
[147] Thompson M C, Busch D H. J. Am. Chem. Soc., 1962, 84(9):1762.
[148] Hubin T J, Busch D H. Coord. Chem. Rev., 2000, 200/202:5.
[149] Nitschke J R. Acc. Chem. Res., 2007, 40(2):103.
[150] Campbell V E, Nitschke J R. Synlett, 2008, 2008(20):3077.
[151] Ronson T K, Zarra S, Black S P, Nitschke J R. Chem. Commun., 2013, 49(25):2476.
[152] Castilla A M, Ousaka N, Bilbeisi R A, Valeri E, Ronson T K, Nitschke J R. J. Am. Chem. Soc., 2013, 135(47):17999.
[153] Ronson T K, Pilgrim B S, Nitschke J R. J. Am. Chem. Soc., 2016, 138(33):10417.
[154] Li H, Yao Z J, Liu D, Jin G X. Coord. Chem. Rev., 2015, 293/294:139.
[155] Zhang Y Y, Gao W X, Lin L, Jin G X. Coord. Chem. Rev., 2016.
[156] Li K, Zhang L Y, Yan C, Wei S C, Pan M, Zhang L, Su C Y. J. Am. Chem. Soc., 2014, 136(12):4456.
[157] Wu K, Li K, Hou Y J, Pan M, Zhang L Y, Chen L, Su C Y. Nat. Commun., 2016, 7:10487.
[158] Metherell A J, Ward M D. Chem. Commun., 2014, 50(48):6330.
[159] Sauvage J P. Acc. Chem. Res., 1990, 23(10):319.
[160] 2016年诺贝尔化学奖:有关分子层面上设计机器的故事. (2016.10.5). http://tech.sina.com.cn/d/i/2016-10-05/doc-ifxwrhpm2429712.shtml
[161] Sambrook M R, Beer P D, Wisner J A, Paul R L, Cowley A R, Szemes F, Drew M G B. J. Am. Chem. Soc., 2005, 127(7):2292.
[162] Dietrich-Buchecker C, Colasson B, Jouvenot D, Sauvage J P. Chem. Eur. J., 2005, 11(15):4374.
[163] Ayme J F, Beves J E, Leigh D A, Mcburney R T, Rissanen K, Schultz D. Nat. Chem., 2011, 4(1):15.
[164] Beves J E, Blight B A, Campbell C J, Leigh D A, Mcburney R T. Angew. Chem. Int. Ed., 2011, 50(40):9260.
[165] Dietrich-Buchecker C O, Sauvage J P. Angew. Chem. Int. Ed., 1989, 28(2):189.
[166] Belfrekh N, Dietrich-Buchecker C, Sauvage J P. Inorg. Chem., 2000, 39(22):5169.
[167] Adams H, Ashworth E, Breault G A, Guo J, Hunter C A, Mayers P C. Nature, 2001, 411(6839):763.
[168] Nierengarten J F, Dietrich-Buchecker C O, Sauvage J P. J. Am. Chem. Soc., 1994, 116(1):375.
[169] Meyer C D, Forgan R S, Chichak K S, Peters A J, Tangchaivang N, Cave G W V, Khan S I, Cantrill S J, Stoddart J F. Chem. Eur. J., 2010, 16(42):12570.
[170] Benaglia M, Ponzini F, Woods C R, Siegel J S. Org. Lett., 2001, 3(7):967.
[171] Chiu S H, Pease A R, Stoddart J F, White A J P, Williams D J. Angew. Chem. Int. Ed., 2002, 41(2):270.
[172] Chichak K S, Cantrill S J, Pease A R, Chiu S H, Cave G W V, Atwood J L, Stoddart J F. Science, 2004, 304(5675):1308.
[173] Venturi M, Credi A, Balzani V. Coord. Chem. Rev., 1999, 185/186:233.
[174] Sauvage J P. Chem. Commun., 2005, (12):1507.
[175] Collin J P, Dietrich-Buchecker C, Gaviña P, Jimenez-Molero M C, Sauvage J P. Acc. Chem. Res., 2001, 34(6):477.
[176] Liu Y, Flood A H, Bonvallet P A, Vignon S A, Northrop B H, Tseng H R, Jeppesen J O, Huang T J, Brough B, Baller M, Magonov S, Solares S D, Goddard W A, Ho C M, Stoddart J F. J. Am. Chem. Soc., 2005, 127(27):9745.
[177] Jiménez M C, Dietrich-Buchecker C, Sauvage J P. Angew. Chem. Int. Ed., 2000, 39(18):3284.
[178] Lewandowski B, De Bo G, Ward J W, Papmeyer M, Kuschel S, Aldegunde M J, Gramlich P M E, Heckmann D, Goldup S M, D'souza D M, Fernandes A E, Leigh D A. Science, 2013, 339(6116):189.
[179] Cai Y P, Su C Y, Chen C L, Li Y M, Kang B S, Chan A S C, Kaim W. Inorg. Chem., 2003, 42(1):163.
[180] Jiang J J, Zheng S R, Liu Y, Pan M, Wang W, Su C Y. Inorg. Chem., 2008, 47(22):10692.
[181] Han L, Hong M C. Inorg. Chem. Commun., 2005, 8(4):406.
[182] Albrecht M. Chem. Rev., 2001, 101(11):3457.
[183] Piguet C, Borkovec M, Hamacek J, Zeckert K. Coord. Chem. Rev., 2005, 249(5/6):705.
[184] Piguet C, Bernardinelli G, Hopfgartner G. Chem. Rev., 1997, 97(6):2005.
[185] Zhang J Y, Su C Y. Coord. Chem. Rev., 2013, 257(7/8):1373.
[186] Wei S C, Pan M, Fan Y Z, Liu H L, Zhang J Y, Su C Y. Chem. Eur. J., 2015, 21(20):7418.
[187] Li L, Xiang S L, Cao S Q, Zhang J Y, Ouyang G F, Chen L P, Su C Y. Nat. Commun., 2013, 4:1774.
[188] Wei S C, Pan M, Li K, Wang S J, Zhang J Y, Su C Y. Adv. Mater., 2014, 26(13):2072.
[1] 杜淼 卜显和. 向高功能发展的配位聚合物*[J]. 化学进展, 2009, 21(11): 2458-2464.
[2] 潘月秀,佟斌,支俊格,赵玮,申进波,董宇平. 基于配位自组装的全共轭三联吡啶-过渡金属环状超分子的构筑及其光、电化学性能* [J]. 化学进展, 2009, 21(09): 1763-1771.
[3] 胡英,刘洪来. 分子工程和化学工程[J]. 化学进展, 1995, 7(03): 235-.
阅读次数
全文


摘要

配位超分子自组装