English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 524-529 DOI: 10.7536/PC161221 前一篇   后一篇

• 综述 •

聚双环戊二烯基多孔材料的制备及性能

姚臻, 王祖飞, 于云飞, 杨文龙, 曹堃*   

  1. 浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310027
  • 收稿日期:2016-12-14 修回日期:2017-03-17 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 曹堃 E-mail:kcao@che.zju.edu.cn
  • 基金资助:
    国家重点研发计划(No.2016YFB0302202)和国家自然科学基金项目(No.51473146)资助

Preparation and Properties of Porous PDCPD-Based Materials

Zhen Yao, Zufei Wang, Yunfei Yu, Wenlong Yang, Kun Cao*   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2016-12-14 Revised:2017-03-17 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the National Key Research and Development Program of China (No.2016YFB0302202) and the National Natural Science Foundation of China (No.51473146).
聚双环戊二烯(PDCPD)基多孔材料继承了聚双环戊二烯本身固有的高模量等特性,近年来备受关注。PDCPD基多孔材料的制备方法主要有溶胶-凝胶结合超临界干燥法、高内相乳液法、化学诱导相分离法以及化学发泡法等。利用不同方法制备的PDCPD多孔材料往往具有不同的结构和性能特征。例如,利用化学诱导相分离法和化学发泡法制备的低孔隙率闭孔PDCPD基材料多作为结构材料;高内相乳液法制备的开孔PDCPD基复合膜可实现催化反应;溶胶-凝胶结合超临界干燥法制备的高孔隙率开孔PDCPD材料导热系数低于20 mW/(m·K),可用于保温隔热。此外,本文还展望了PDCPD基多孔材料的发展前景。
The porous polydicyclopentadiene(PDCPD)-based materials which inherit the high modulus of PDCPD have been greatly concerned in recent years. The major methods to prepare porous PDCPD-based materials include sol-gel & supercritical fluid drying,high internal phase emulsion, chemically induced phase separation and chemical foaming. The structure of porous PDCPD-based materials made by different methods determines their various applications. For example, the porous PDCPD-based materials with low-porosity and closed-cell structure that prepared by chemically induced phase separation and chemical foaming can be used as the structural materials. The PDCPD-based composite membrane fabricated by high internal phase emulsion is applied to catalytic reaction. The open-cell PDCPD aerogels made by sol-gel & supercritical fluid drying have high-porosity and low thermal conductivity (<20 mW/(m·K)), which is a good candidate for the thermal insulation materials. The development of the porous PDCPD-based materials are also prospected.
Contents
1 Introduction
2 Sol-gel & supercritical fluid drying
3 High internal phase emulsion
4 Chemically induced phase separation
5 Chemical foaming
6 Conclusion

中图分类号: 

()
[1] 胡方圆(Hu F Y),郑玉斌(Zheng Y B). 高分子通报(Polymer Bulletin), 2011, 9:139.
[2] Newburg N R. US 4481344, 1984.
[3] Lee J K, Gould G L. US 2006/0229374, 2006.
[4] Lee J K, Gould G L. J. Sol-Gel Sci. Technol., 2007, 44:29.
[5] Mohite D P, Mahadik-Khanolkar S, Luo H, Lu H, Sotiriou-Leventis C, Leventis N. Soft Matter, 2013, 9:1516.
[6] Mohite D P, Mahadik-Khanolkar S, Luo H, Lu H, Sotiriou-Leventis C, Leventis N. Soft Matter, 2013, 9:1531.
[7] Bang A, Mohite D, Saeed A M, Leventis N, Sotiriou-Leventis C. J. Sol-Gel Sci. Technol., 2015, 75:460.
[8] Lenhardt J M, Kim S H, Nelson A J, Singhal P, Baumann T F, Satcher J H. Polymer, 2013, 54:542.
[9] Kim S H, Shin S J, Lenhardt J M, Braun T, Sain J D, Valdez C A, Leif R N, Kucheyev S O, Wu K J J, Biener J. ACS Appl. Mater. Interfaces, 2013, 5:8111.
[10] Kova?i? S, Krajnc P, Slugovc C. Chem. Commun., 2010, 46:7504.
[11] Kova?i? S, Jeábek K, Krajnc P, Slugovc C. Polym. Chem., 2012, 3:325.
[12] Kova?i? S, Matsko N B, Jerabek K, Krajnc P, Slugovc C. J. Mater. Chem. A, 2013, 1:487.
[13] Kova?i? S, Preishuber-Pflügl F, Slugovc C. Macromol. Mater. Eng., 2014, 299:843.
[14] Knall A C, Kova?i? S, Hollauf M, Reishofer D, Saf R, Slugovc C. Chem. Commun., 2013, 49:7325.
[15] Mert E, Slugovc C, Krajnc P. Express Polym. Lett., 2015, 9:344.
[16] Kova?i? S, Kren H, Krajnc P, Koller S, Slugovc C. Macromol. Rapid Commun., 2013, 34:581.
[17] Kova?i? S, Mazaj M, Ješelnik M, Pahovnik D, ?agar E, Slugovc C, Logar N Z. Macromol. Rapid Commun., 2015, 36:1605.
[18] Kova?i? S, An?lovar A, Erjavec B, Kapun G, Matsko N B, ?igon M, ?agar E, Pintar A, Slugovc C. ACS Appl. Mater. Interfaces, 2014, 6:19075.
[19] Kova?i? S, Matsko N B, Ferk G, Slugovc C. J. Mater. Chem. A, 2013, 1:7971.
[20] Della Martina A, Hilborn J, Mühlebach A. Macromolecules, 2000, 33:2916.
[21] Della Martina A, Hilborn J. J. Mater. Res., 2001, 16:2045.
[22] Della Martina A, Garamszegi L, Hilborn J G. J. Polym. Sci. Pol. Chem., 2003, 41:2036.
[23] Della Martina A, Graf R, Hilborn J G. J. Appl. Polym. Sci., 2005, 96:407.
[24] Chen L, Phillip W A, Cussler E, Hillmyer M A. J. Am. Chem. Soc., 2007, 129:13786.
[25] Chen L, Hillmyer M A. Macromolecules, 2009, 42:4237.
[26] Amendt M A, Chen L, Hillmyer M A. Macromolecules, 2010, 43:3924.
[27] Phillip W A, Amendt M, O'Neill B, Chen L, Hillmyer M A, Cussler E L. ACS Appl. Mater. Interfaces, 2009, 1:472.
[28] 陈国伟(Chen G W),赫玉欣(He Y X),李旭阳(Li X Y), 刘秋菊(Liu Q J),张玉清(Zhang Y Q). 高分子材料科学与工程(Polymeric Materials Science and Engineering), 2015:149.
[1] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[2] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[3] 李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
[4] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[5] 陈柯睿, 胡欣, 邱江凯, 朱宁, 郭凯. 开环易位聚合合成瓶刷聚合物[J]. 化学进展, 2020, 32(1): 93-102.
[6] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[7] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[8] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[9] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[10] 冯雨晨, 介素云, 李伯耿. 烯烃易位聚合制备遥爪聚合物及嵌段共聚物[J]. 化学进展, 2015, 27(8): 1074-1086.
[11] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[12] 付艳艳, 严秀平*. 金属-有机骨架复合材料[J]. 化学进展, 2013, 25(0203): 221-232.
[13] 杨勇 沈泓滢 邢航 潘毅 白俊峰 . 微孔配位聚合物作为新型储氢材料的研究[J]. 化学进展, 2006, 18(05): 648-656.
[14] 魏文英,方键,孔海宁,韩金玉,常贺英. 金属有机骨架材料的合成及应用[J]. 化学进展, 2005, 17(06): 1110-1115.