English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 119-126 DOI: 10.7536/PC160730 前一篇   后一篇

• 综述 •

有机光电材料在光声成像领域的应用

卢晓梅1, 陈鹏飞1, 胡文博2, 唐玉富2, 黄维1,2*, 范曲立2*   

  1. 1. 江苏省柔性电子重点实验室 先进材料研究院 江苏先进生物与化学制造协同创新中心 南京工业大学 南京 211816;
    2. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地南京 210023
  • 收稿日期:2016-07-27 修回日期:2016-12-21 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 黄维, 范曲立 E-mail:wei-huang@njtech.edu.cn;iamqlfan@njupt.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.61378081,21574064,21674048)资助

Organic Optoelectronic Materials for Photoacoustic Imaging

Xiaomei Lu1, Pengfei Chen1, Wenbo Hu2, Yufu Tang2, Wei Huang1,2*, Quli Fan2*   

  1. 1. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China;
    2. Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2016-07-27 Revised:2016-12-21 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61378081, 21574064, 21674048).
光声成像技术是采用“光激发声探测图像重建”的方法进行成像的一种新型分子影像技术。作为一种非侵害性的成像技术,光声成像既具备了声学成像技术穿透深度高的特点,也具备了光学成像技术高分辨率和高对比度的特性,克服了传统光学成像技术在成像深度与分辨率上不可兼得的缺陷。然而目前光声成像技术仍缺乏合适造影剂,严重制约了其应用与拓展,因此设计开发高效的光声造影剂是光声成像技术发挥其巨大潜能的关键。本文综述了五类有机光声造影剂(苝酰亚胺类、花菁类、BODIPY类、卟啉类和聚合物类)的研究进展,着重分析其结构与光学性质相关的构效关系,为有机光声造影剂的设计和开发提供指导,最后对有机光声造影剂存在的主要问题以及未来的热点方向进行了分析和展望。
Newly emerging photoacoustic imaging (PAI) technology that couples the advantages of optical imaging and ultrasound imaging allows a fascinating non-invasive imaging paradigm with higher spatial resolution and deeper imaging deepness when compared with traditional optical imaging techniques (e.g., fluorescence). Typically, PA contrast agents, which convert the absorbed photon energy into ultrasonic emission, are essential for a successful PA imaging. Although naturally occurring absorbers such as melanin and hemoglobin can serve as endogenous PA contrast agent to monitor anatomical and physiological variations in diseases, only small fractions of such endogenous contrast agents have been reported. Therefore, in order to fully explore the potential of PAI, exogenous PA contrast agents based on near-infrared (NIR, 650~900 nm) absorption materials are urgently demanded. This article reviews the recent advances of organic optoelectronic materials in PAI such as small organic dye-based nanoparticles, polymer-based nanoparticles in biological imaging field. Then, we systematically summarize the structure properties relationship between contrast agents and the application of PAI to guide the design of new PA contrast agents. Finally, the future opportunities and challenges of PA contrast agents are discussed.

Contents
1 Introduction
2 Small dye nanoparticles
2.1 Perylene-based derivatives
2.2 Cyanine-based derivatives
2.3 BODIPY-based derivatives
2.4 Porphyrin-based derivatives
3 Conjugated polymer-based nanoparticles
4 Conclusions

中图分类号: 

()
[1] Xu M H, Wang L V. Review of Scientific Instruments, 2006, 7(4):041101.
[2] Wang X D, Xie X Y, Ku G N, Wang L V. Journal of Biomedical Optics, 2006, 11(2):024015.
[3] Li M L, Oh J T, Xie X Y, Ku G, Wang W, Li C, Lungu G, Stoica G, Wang L V. Proceedings of the IEEE, 2008, 96(3):481.
[4] Yang J M, Favazza C, Chen R M, Yao J J, Cai X, Maslov K, Zhou Q F, Shung K K, Wang L V. Nature Medicine, 2012, 18(8):1297.
[5] Wang T H, Yang Y, Alqasemi U, Kumavor P D, Wang X H, Sanders M, Brewer M, Zhu Q. Biomedical Optics Express, 2013, 4(12):2763.
[6] Dima A, Burton N C, Ntziachristos V. Journal of Biomedical Optics, 2014, 19(3):036021.
[7] Wang L V, Gao L. Annual Review of Biomedical Engineering, 2014, 16:155.
[8] Chen W B, Han Y Y, Peng X H. Chemistry-A Eropean Journal, 2014, 20(24):7410.
[9] Kim C, Favazza C, Wang L V. Chemical Reviews, 2010, 110(5):2756.
[10] Wang X D, Pang Y J, Ku G, Xie X Y, Stoica G, Wang L V. Nature Biotechnology, 2003, 21(7):803.
[11] Taruttis A, Razansky D, Ntziachristos V. Claussen J, Journal of Biomedical Optics, 2012, 17(1):016009.
[12] Ntziachristos V. Nature Methods, 2010, 7(8):603.
[13] Ntziachristos V, Razansky D. Chemical Reviews, 2010, 110(5):2783.
[14] Wang L V, Hu S. Science, 2012, 335(6075):1458.
[15] Nie L M, Chen X Y. Chemical Society Reviews, 2014, 43(20):7132.
[16] Jathoul AP, Laufer J, Ogunlade O, Treeby B, Cox B, Zhang E, Johonson P, Pizzey AR, Philip B, Marafioti T. Nature Photonics, 2015, 9(4):219.
[17] Zhang J C, Qiao Z Y, Yang P P, Pan J, Wang L, Wang H. Chinese Journal of Chemistry, 2015, 33(1):35.
[18] Pan J, Wan D, Bian Y X, Sun H F, Zhang C, Jin F M, Huang Z Q, Gong J L. AIChE Journal, 2013, 59(12):4494.
[19] Li K, Liu B. Chemical Society Reviews, 2014, 43(18):6570.
[20] Kim C, Song K H, Gao F, Wang L V. Radiology, 2010, 255(2):442.
[21] Akers W J, Kim C, Berezin M, Guo K, Fuhrhop R, Lanza G M, Fischer G M, Daltrozzo E, Zumbusch A, Cai X, Wang L V, Achilefu S. ACS Nano, 2011, 5(1):173.
[22] de la Zerda A, Bodapati S, Teed R, May S Y, Tabakman S M, Liu Z, Khuri-Yakub B. T, Chen X Y, Dai H J, Gambhir S S. ACS Nano, 2012, 6(6):4694.
[23] Lindner S M, Huttner S, Chiche A, Thelakkat M, Krausch G. Angewandte Chemie-International Edition, 2006, 45(20):3364.
[24] Ohta T, Nagano T, Ochi K, Kubozono Y, Shikoh E, Fujiwara A. Applied Physics Letters, 2006, 89(5):053508.
[25] Liu Y, Wang K R, Guo D S, Jiang B P. Advanced Functional Materials, 2009, 19(14):2230.
[26] Fan Q L, Cheng K, Yang Z, Zhang R P, Yang M, Hu X, Ma X W, Bu L H, Lu X M, Xiong X X, Huang W, Zhao H, Cheng Z. Advanced materials, 2015, 27(5):843.
[27] Chen Q, Liu X D, Chen J W, Zeng J W Cheng Z F, Liu Z. Advanced materials, 2015, 27(43):6820.
[28] Sheng Z H, Hu D H, Zheng M B, Zhao P F, Liu H L, Gao D Y, Gong P, Gao G H, Zhang P F, Ma Y F, Cai L T. ACS Nano, 2014, 8(12):12310.
[29] Zhang Y M, Jeon M, Rich L J, Hong H, Geng J M, Zhang Y, Shi S M, Barnhart T E, Alexandridis P, Huizinga J D, Seshadri M, Cai W B, Kim C, Lovell J F. Nature nanotechnology, 2014, 9(8):631.
[30] Huang G J, Si Z, Yang S H, Li C, Xing D. Journal of Materials Chemistry, 2012, 22(42):22575.
[31] Ni Y, Wu J S. Organic & Biomolecular Chemistry, 2014, 12(23):3774.
[32] Collado D, Vida Y, Najera F, Perez-Inestrosa E. RSC ADVANCES, 2014, 4:2306.
[33] Kamkaew A, Lim S H, Lee H B, Kiew L V, Chun L Y, Burgess K. Chemical Society Reviews, 2013,42(1):77.
[34] Frenette M, Hatamimoslehabadi M, Bellinger-Buckley S, Laoui S, La J, Bag S, Mallidi S, Hasan T, Bouma B, Yelleswarapu C, Rochford J. Journal of the American Chemical Society, 2014, 136(45):15853.
[35] Gresser R, Hummert M, Hartmann H, Leo K, Riede M. Chemistry-A European Journal, 2011, 17(10):2939.
[36] Jiao L J, Wu Y Y, Wang S F, Hu X K, Zhang P, Yu C J, Cong K B, Meng Q L, Hao E H, Vicente M G H, The Journal of Organic Chemistry, 2014, 79(4):1830.
[37] Majumdar P, Mack J, Nyokong T. RSC ADVANCES, 2015, 5(95):78253.
[38] Loudet A, Bandichhor R, Wu L X, Burgess K. Tetrahedron, 2008, 64(17):3642.
[39] Ma X, Mao X R, Zhang S W, Huang X B, Cheng Y X, Zhu C J. Polym. Chem., 2013, 4(3):520.
[40] Yang S K, Shi X H, Park S, Ha T, Zimmerman S C. Nature chemistry, 2013, 5(8):692.
[41] Yoshii R, Nagai A, Chujo Y. Journal of Polymer Science Part A:Polymer Chemistry, 2010, 48(23):5348.
[42] Yoshii R, Yamane H, Nagai A, Tanaka K, Taka H, Kita H, Chujo Y. Macromolecules, 2014, 47(7):2316.
[43] Li H, Zhang P, Smaga L P, Hoffman R A, Chan J. Journal of the American Chemical Society, 2015, 137(50):15628.
[44] Hu W B, Ma H H, Hou B, Zhao H, Ji Y, Jiang R C, Hu X M, Lu X M, Zhang L, Tang Y F, Fan Q L, Huang W. ACS Applied Materials & Interfaces, 2016, 8(19):12039.
[45] Huynh E, Leung B Y, Helfield B L, Shakiba M, Gandier J A, Jin C S, Master E R, Wilson B C, Goertz D E, Zheng G. Nature nanotechnology, 2015, 10(4):325.
[46] Huynh E, Lovell J F, Helfield B L, Jeon M, Kim C, Goertz D E, Wilson B C, Zheng G. Journal of the American Chemical Society, 2012, 134(40):16464.
[47] Lovell J F, Jin C S, Huynh E, Jin H, Kim C, Rubinstein J L, Chan W C W, Cao W G, Wang L V, Zheng G. Nature materials, 2011, 10(4):324.
[48] Ng K K, Takada M, Harmatys K, Chen J, Zheng, G. ACS Nano 2016, 10(4):4092.
[49] Zhang D, Qi G B, Zhao Y X, Qiao S L, Yang C, Wang H. Advanced Materials, 2015, 27(40):6125.
[50] Li L L, Ma H L, Qi G B, Zhang D, Yu F Q, Hu Z Y, Wang H. Advanced Materials, 2016, 28(2):254.
[51] Zha Z B, Deng Z J, Li Y Y, Li C H, Wang J R, Wang S M, Qu E Z, Dai Z F. Nanoscale, 2013, 5(10):4462.
[52] Liu J, Geng J L, Liao L D, Thakor N, Gao X H, Liu B. Polymer Chemistry, 2014, 5(8):2854.
[53] Hong J Y, Yoon H, Jang J. Small, 2010, 6(5):679.
[54] Jang J, Yoon H. Small, 2005, 1(12):1195.
[55] Oh W K, Yoon H, Jang J. Biomaterials, 2010, 31(6):1342.
[56] Pu K Y, Shuhendler A J, Jokerst J V, Mei J G, Gambhir S S, Bao Z N, Rao J H. Nature nanotechnology, 2014, 9(3):233.
[57] Yang J, Choi J, Bang D, Kim E, Lim E K, Park H, Suh J S, Lee K, Yoo K H, Kim E K. Angewandte Chemie-International Edition, 2011,50(2):441.
[58] Chong H, Nie C Y, Zhu C L, Yang Q, Lv F T, Wang S. Langmuir, 2012, 28(4):2091.
[59] Yang K, Xu H, Cheng L, Sun C Y, Wang J, Liu Z. Advanced Mareials, 2013, 25(7):945.
[60] Zha Z B, Yue X L, Ren Q S, Dai Z F. Advanced materials, 2013,25(5):2013.
[61] Liang X L, Li Y Y, Li X D, Jing L J, Deng Z J, Yue X L, Li C H, Dai Z F, Advanced Functional Materials, 2015, 25(9):1451.
[62] Huang S, UPPuturi P K, Liu H, Pramanik M, Wang M F. Journal of Materials Chemistry B, 2016, 4(9):1696.
[63] Lyu Y, Fang Y, Miao Q Q, Zhen X, Ding D, Pu K Y. ACS Nano, 2016, 10(4):4472.
[64] Fan Q L, Cheng K, Hu X, Ma X W, Zhang R P, Yang M, Lu X. M, Xing L, Huang W, Gambhir S S, Cheng Z. Journal of the American Chemical Society, 2014, 136(43):15185.
[65] Yang M, Fan Q L, Zhang R P, Cheng K, Yan J J, Pan D H, Ma X W, Lu A, Cheng Z. Biomaterials, 2015, 69:30.
[66] Zhang R P, Fan Q L, Yang M, Cheng K, Lu X M, Zhang L, Huang W, Cheng Z. Advanced Materials, 2015, 27(34):5063.
[67] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne A J C. Chemical Communications, 2015, 51(28):6084.
[1] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[2] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[3] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[4] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[5] 邓广, 杨红, 周治国*, 杨仕平*. T1-T2双模式磁共振造影剂的设计及应用[J]. 化学进展, 2018, 30(10): 1534-1547.
[6] 陈瑞*, 王晶晶, 乔宏志. 有机光热转换材料及其在光热疗法中的应用[J]. 化学进展, 2017, 29(2/3): 329-336.
[7] 刘迎亚, 范霄, 李艳艳, 渠陆陆, 覃海月, 曹英男, 李海涛. 多光谱光声层析成像及其在生物医学中的应用[J]. 化学进展, 2015, 27(10): 1459-1469.
[8] 杜建委, 牟芸, 王幽香. 超声介导微泡基因传递体系的研究[J]. 化学进展, 2014, 26(08): 1427-1433.
[9] 靳玉慎, 柯亨特, 戴志飞* . 多功能超声造影剂[J]. 化学进展, 2012, 24(12): 2424-2430.
[10] 沈爱军, 董海青, 温惠云, 徐梦, 李永勇, 王培军. 钆类造影剂用于肿瘤靶向性成像[J]. 化学进展, 2011, 23(4): 772-780.
[11] 王玲昀 陈秋云 魏斌. 肿瘤诊断的MRI造影剂*[J]. 化学进展, 2010, 22(01): 186-193.
[12] 庄小东,陈彧,刘莹,蔡良珍,林楹. 自组装有机纳米功能材料*[J]. 化学进展, 2007, 19(11): 1653-1661.
[13] 张善荣,任吉民,裴奉奎. 磁共振成像造影剂的一些进展[J]. 化学进展, 1995, 7(02): 98-.