English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1501-1514 DOI: 10.7536/PC160532 前一篇   后一篇

• 综述与评论 •

含CH基的阴离子受体

伍宏伟, 陈亚运, 饶才辉, 刘传祥*   

  1. 上海应用技术大学 化学与环境工程学院 上海 201418
  • 收稿日期:2016-05-01 修回日期:2016-08-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 刘传祥 E-mail:cxliu@sit.edu.cn.
  • 基金资助:
    国家自然科学基金青年基金项目(No.21202099)资助

Anion Receptors Based on CH Donor Group

Wu Hongwei, Chen Yayun, Rao Caihui, Liu Chuanxiang*   

  1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received:2016-05-01 Revised:2016-08-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the Natural Science Foundation Youth Foundation of China (No. 21202099).
阴离子在生命、临床及环境科学中有着重要作用,设计用于识别阴离子的人工合成受体是超分子化学的一个研究热点。识别阴离子的方法主要有氢键作用、质子转移机制、路易斯酸碱作用、以及基于不可逆的特定化学反应等。相对于传统的含NH或OH识别位点的阴离子受体,近年来含CH基阴离子受体的研究取得了长足的进展。本文详细评述了含烷基CH,苯基CH,三唑CH,咪唑鎓CH,三唑鎓CH以及CHCN基阴离子受体的设计、结构及其阴离子识别作用的研究进展。
The design and synthesis of artificial receptors for sensing and recognition of anions have received considerable attention in supramolecular chemistry because of the essential roles that anions play in a wide variety of biological, clinical and environmental sciences. The usual design strategies for anion sensing are through hydrogen-bonding interaction, intermolecular proton-transfer reaction, the Lewis acid/base interactions or an irreversible specific chemical reaction. Compared to the conventional anion receptors containing the NH or OH binding sites, recently, the anion receptors based on CH group have attracted much attention. Therefore, this review summarizes the main design principles and sensing abilities of the anion receptors based on receptors which having alkyl CH groups, phenyl CH groups, triazole-based CH groups, imidazolium-based CH groups, triazolium-based CH groups, CHCN group.

Contents
1 Introduction
2 Alkyl-based CH groups
3 Phenyl-based CH groups
4 Triazole-based CH groups
5 Imidazolium-based CH groups
6 Triazolium-based CH groups
7 CHCN-based CH groups
8 Conclusion

中图分类号: 

()
[1] Bianchi E, Bowman-James K, García-España E. Superamolecular Chemistry of Anions, New York:Wiley-VCH, 1997.
[2] 刘育(Liu Y),尤成才(You C C),张衡益(Zhang H Y).超分子化学——合成受体的分子识别与组装(Supramolecular Chemistry, Molecular Recognition and Assembly of Synthetic Receptors).天津:南开大学出版社(Tianjin:Nankai University Press), 2003.
[3] Xie Y, Morimoto T, Furuta H. Angew. Chem. Int. Ed.,2006, 45:6907.
[4] Amendola V, Fabbrizzi L, Mosca L. Chem. Soc. Rev., 2010, 39:3889.
[5] Li A, Wang J, Wang F, Jiang Y. Chem. Soc. Rev., 2010, 39:3729.
[6] Wang Q, Xie Y, Ding Y, Li X, Zhu W. Chem. Commun., 2010, 46:3669.
[7] Cai J, Sessler J L. Chem. Soc. Rev., 2014, 43:305.
[8] 吴芳英(Wu F Y), 温珍昌(Wen Z Z), 江云宝(Jiang Y B). 化学进展(Progress in Chemistry), 2004, 16(5):776.
[9] 林奇(Lin Q), 魏太保(Wei T B), 姚虹(Yao H), 张有明(Zhang Y M). 化学进展(Progress in Chemistry), 2009, 21(6):1207.
[10] Cai J, Sessler J L. Chem. Soc. Rev., 2014, 43:6198.
[11] Farnham W B, Roe D C, Dixon D A, Calabrese J C, Harlow R L. J. Am. Chem. Soc., 1990, 112:7707.
[12] Zhu S S, Staats H, Brandhorst K, Grunenberg J, Gruppi F, Dalcanale E, Lützen A, Rissanen K, Schalley C A. Angew.Chem. Int. Ed., 2008, 47:788.
[13] Bedford R B, Betham M, Butts C P, Coles S J, Hursthouse M B, Scully P N, Tucker J H R, Wilkie J, Willener Y. Chem. Commun., 2008, 2429.
[14] Pandian T S, Cho S J, Kang J. J. Org. Chem., 2013, 78:12121.
[15] García H M, Morales D, Pérez J, Puerto M, Río I. Chem. Eur. J., 2014, 20:5821.
[16] Sabater P, Zapata F, Caballero A, Fernándze I, Arellano C R, Molina P. J. Org. Chem., 2016, 81:3790.
[17] Hay B P,Gutowski M, Dixon D A, Garza J, Vargas R, Moyer B A. J. Am. Chem. Soc., 2004, 126:7925.
[18] Vargas R, Garza J, Dixon D A, Hay B P. J. Am. Chem. Soc., 2000, 122:4750.
[19] Graul S T, Squires R R. J. Am. Chem. Soc., 1990, 112:2517.
[20] Davico G E, Bierbaum V M, DePuy C H, Ellison G B, Squires R R. J. Am. Chem. Soc., 1995, 117:2590.
[21] Berryman O B, Sather A C, Hay B P, Meisner J S, Johnson D W. J. Am. Chem. Soc., 2008, 130:10895.
[22] Amendola V, Bergamaschi G, Boiocchi M, Fabbrizzi L, Milani M. Chem. Eur. J., 2010, 16:4368.
[23] Tresca B W, Zakharov L N, Carroll C N, Johnson D W, Haley M M. Chem. Commun., 2013, 49:7240.
[24] Lee S, Chen C H, Flood A H. Nat. Chem., 2013, 5:704.
[25] Tresca B W, Hansen R J, Chau C V, Hay B P, Zakharov L N, Haley M M, Johnson D W. J. Am. Chem. Soc., 2015, 137:14959.
[26] Xu L, Li Y, Li Y. Asian J. Org. Chem., 2014, 3:582.
[27] Li Y, Flood A H. Angew. Chem. Int. Ed., 2008, 47:2649.
[28] Li Y, Pink M, Karty JA, Flood A H. J. Am. Chem. Soc., 2008, 130:17293.
[29] Lee S, Hua Y, Park H, Flood A H. Org. Lett., 2010, 12:2100.
[30] McDonald K P, Ramabhadran R O, Lee S, Raghavachari K, Flood A H. Org. Lett., 2011, 13:6260.
[31] Ramabhadran R O, Liu Y, Hua Y, Ciardi M, Flood A H, Raghavachari K. J. Am. Chem. Soc., 2014, 136:5078.
[32] Meudtner R M, Hecht S. Angew. Chem. Int. Ed., 2008, 47:4926.
[33] Fisher M G, Gale P A, Hiscock J R, Hursthouse M B, Light M E, Schmidtchen F P, Tong C C. Chem. Commun., 2009, 3017.
[34] Sessler J L, Cai J, Gong H Y, Yang X, Arambula J F, Hay B P. J. Am. Chem. Soc., 2010, 132:14058.
[35] Cao Q Y, Pradhan T, Kim S, Kim J S. Org. Lett., 2011, 13:4386.
[36] Xu L, Li Y, Yu Y, Liu T, Cheng S, Liu H, Li Y. Org. Biomol. Chem., 2012, 10:4375.
[37] Li Y J, Xu L, Yang W L, Liu H B, Lai S W, Che C M, Li Y L. Chem. Eur. J., 2012, 18:4782.
[38] Cao L, Jiang R, Zhu Y, Wang X, Li Y, Li Y. Eur. J. Org. Chem., 2014, 2687.
[39] Kwon J Y, Singh N J, Kim H N, Kim S K, Kim S K, Yoon J Y. Am. Chem. Soc., 2004, 126:8892.
[40] Chellappan K, Singh N J, Hwang I C, Lee J W, Kim K S. Angew. Chem. Int. Ed., 2005, 44:2899.
[41] Zhou H, Zhao Y, Gao G, Li S, Lan J, You J. J. Am. Chem. Soc., 2013, 135:14908.
[42] Zhuo J B, Lin C X, Wan Q, Xie L L, Yuan Y F. J. Organomet. Chem., 2015, 791:289.
[43] Pandian T S, Kang J. Tetra. Let., 2015, 56:4191.
[44] Kumar A, Pandey P S. Org. Lett., 2008, 10:165.
[45] Schulze B, Friebe C, Hager M D, Günther W, Köhn U, Jahn B O, Görls H, Schubert S. Org. Lett., 2010, 12:2710.
[46] Cai J, Hay B P, Young N J, Yang X, Sessler J L. Chem. Sci., 2013, 4:1560.
[47] Zaapata F, Gonzale L, Caballero A, Alkorta I, Elguero J, Molina P. Chem. Eur. J., 2015, 21:9797.
[48] González L, Zapata F, Caballero A, Molina P, Arellano C R, Alkorta I, Elguero J. Chem. Eur. J., 2016, 22:7533.
[49] Chen J, Liu C, Zhang J, Ding W, Zhou M, Wu F. Chem. Commun., 2013, 49:10814.
[50] Li B, Zhang C, Liu C, Chen J, Wang X, Liu Z, Yi F. RSC Adv., 2014, 4:46016.
[51] Zhou M, Chen J, Liu C, Fu H, Zheng N, Zhang C, Chen Y, Cheng J.Chem. Commun., 2014, 50:14748.
[52] Zhang C, Liu C, Li B, Chen J, Zhang H, Hu Z, Yi F. New J. Chem., 2015, 51:8173.
[53] Liu C, Wang X, Wu H, Chen Y. Dyes and Pigments, 2016, 133:255.
[1] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[2] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[3] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[4] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[5] 姚闯, 张希, 黄勇力, 李蕾, 马增胜, 孙长庆. 水的结构和反常物性[J]. 化学进展, 2018, 30(8): 1242-1256.
[6] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[7] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[8] 张金帅, 于凤丽, 袁冰, 解从霞, 于世涛. 溶剂在反应控制相转移催化反应中的影响[J]. 化学进展, 2018, 30(2/3): 304-313.
[9] 余响林, 陈小姣, 张碧玉, 饶聪, 何源, 黎俊波. 基于有序介孔材料的荧光探针及其应用[J]. 化学进展, 2016, 28(6): 896-907.
[10] 钟克利, 郭宝峰, 周雪, 蔡克迪, 汤立军, 金龙一. 基于芘的离子荧光化学传感器[J]. 化学进展, 2015, 27(9): 1230-1239.
[11] 李敏睿, 郭永亮, 杨保平, 郭军红, 崔锦峰. 基于脲衍生物阴离子识别的电化学检测[J]. 化学进展, 2015, 27(5): 559-570.
[12] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[13] 杨勇, 窦丹丹. 三重和四重氢键体系:设计、结构和应用[J]. 化学进展, 2014, 26(05): 706-726.
[14] 王赛, 吴斌, 段军飞, 方江邻*, 谌东中. 基于脲基氢键组装的功能超分子凝胶[J]. 化学进展, 2014, 26(01): 125-139.
[15] 付钰洁, 唐守渊*. 微波波谱法研究水与有机/生物分子的分子配合物[J]. 化学进展, 2013, 25(06): 1042-1051.
阅读次数
全文


摘要