English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1689-1704 DOI: 10.7536/PC160519 前一篇   后一篇

• 综述与评论 •

亚稳态分子间复合物反应机理研究

王亚军*, 李泽雪, 于海洋, 冯长根   

  1. 北京理工大学爆炸科学与技术国家重点实验室 北京 100081
  • 收稿日期:2016-05-01 修回日期:2016-09-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 王亚军 E-mail:yajunwang@bit.edu.cn
  • 基金资助:
    爆炸科学与技术国家重点实验室(北京理工大学)自主课题项目(No.YBKT16-06)资助

Reaction Mechanism of Metastable Intermolecular Composite

Wang Yajun*, Li Zexue, Yu Haiyang, Feng Changgen   

  1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
  • Received:2016-05-01 Revised:2016-09-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    The work was supported by the Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (No. YBKT16-06).
亚稳态分子间复合物(metastable intermolecular composite,MIC)由于具有超高反应燃烧速率及能量释放速率、高体积能量密度、低扩散距离和绿色环保等优点,在微型含能器件、火箭推进剂和绿色火工药剂等军用领域展现了很好的应用潜力。其反应机制与传统的含能材料不同,且具有超高速反应的瞬时性及复杂性,对其反应机理仍然缺乏清晰的认识,这限制了其应用研究的进展。本文对近年来亚稳态分子间复合物的反应机理研究进行综述,重点讨论具有代表性的“金属-氧翻转机理”和“预点火-熔结机理”。对于MIC材料的反应机理研究,本文主要从实验研究、理论模型研究和数值模拟研究三个方面进行分析。改性MIC材料是对材料性能进行调控的重要手段,是目前及未来的重要发展趋势之一,在论文最后对其反应机理做了重点叙述。通过对当前研究现状的归纳与分析,给出了当前的重要研究成果以及研究中出现的问题,并对未来的研究发展趋势进行了展望。
Due to the superfast combustion velocity and energy releasing rate, high volume energy density, low diffusion distance and being environmental friendly, metastable intermolecular composites (MIC) show great and important potential in both military and civil systems, such as microenergetic device, rocket propellant, green pyrotechnics, etc. However, the reaction mechanism of metastable intermolecular composition is still poorly clear and understood. The ultra-fast transient nature, and the complexity of probing both the vapor-phase and condensed-state chemistries of MIC materials make the reaction mechanism being different from that of traditional energetic materials, which prevents its further development in application research. The present paper summarizes the overseas and domestic research status of reaction mechanism of MIC materials so far. "Metal-oxygen flip mechanism" and "pre-combustion sintering mechanism" are discussed in detail. According to research methods, experimental research, theoretical model research, and numerical simulation research are presented respectively. Modification of MIC materials is an important method for adjusting the performances of the materials, and is one of the developing trends. We discuss the reaction mechanism of the modified materials in the end of the paper. Based on the comprehensive analysis of the study status, the challenges and prospective tendencies of reaction mechanism of MIC are also given.

Contents
1 Introduction
2 Experimental research
2.1 Partical size
2.2 Loading density
2.3 Content of reactive Al
2.4 Al/oxide ratio
2.5 Microstructure
2.6 Preparation method
2.7 Properties of oxidizer
2.8 Role of oxygen[O]
2.9 Microscale charge
2.10 Ignition mechanism
2.11 Others
3 Numerical simulation research
3.1 Molecular dynamics simulation
3.2 Thermal diffusion simulation
3.3 Output pressure simulation
3.4 Rapid oxidation simulation
3.5 Fluid dynamics simulation
3.6 Detonation simulation
4 Theoretical model research
4.1 Diffusion oxidation mechanism
4.2 Ion diffusion mechanism
4.3 Polymorphic phase change oxidation mechanism
4.4 Melt-dispersion mechanism
4.5 Metal-oxygen flip mechanism
4.6 Convective combustion mechanism
4.7 Modified Cabrera-Mott model
4.8 Pre-ignition sintering mechanism
5 Reaction mechanism of modified MIC
6 Conclusion

中图分类号: 

()
[1] Zhou X, Shen R, Ye Y, Zhu P, Hu Y, Wu L. J. Appl. Phys., 2011, 110(9):94505.
[2] 姜海晨(Jiang H C). 南京理工大学硕士论文(Master Dissertation of Nanjing University of Science and Technology), 2013.
[3] 薛艳(Xue Y), 张蕊(Zhang R), 杨伯伦(Yang B L). 火工品(Initiator Pyrot.), 2005(4):33.
[4] Aumann C E, Skofronick G L, Martin J A. J. Vac. Sci. Technol., A, 1996, 13(3):1178.
[5] Park K, Lee D, Rai A, Mukherjee D, Zachariah M R. J. Phys. Chem. B, 2005, 109(15):7290.
[6] Hunt E M, Pantoya M L. J. Appl. Phys., 2005, 98(3):34909.
[7] Pivkina A N, Frolov Y V, Ivanov D A. Combust. Explos. Shock Waves, 2007, 43(1):51.
[8] Trunov M A, Umbrajkar S M, Mirko S, Mang J T, Dreizin E L. J. Phys. Chem. B, 2006, 110(26):13094.
[9] Sun J, Simon S L. Thermochim. Acta, 2007, 463(1/2):32.
[10] Eckert J, Holzer J C, Ahn C C, Fu Z, Johnson W L. Nanostruct. Mater., 1993, 2:407.
[11] Zhang Z, Lü X X, Jiang Q. Physica B, 1999, 270(3/4):249.
[12] Sun J, Pantoya M L, Simon S L. Thermochim. Acta, 2006, 444(2):117.
[13] Weismiller M R, Malchi J Y, Lee J G, Yetter R A, Foley T J. Proc. Combust. Inst., 2011, 33(2):1989.
[14] Queenie S M K, Robert C F, Anne-Marie T, Phillip D L, Richard B, David E G J. Propell. Explos. Pyrot., 2002, 27(4):229.
[15] 莫红军(Mo H J), 赵凤起(Zhao F Q). 火炸药学报(Chin. J. Explos. Propell.), 2005(3):79.
[16] Rai A, Lee D, Park K, Zachariah M R. J. Phys. Chem. B, 2004, 108(39):14793.
[17] Rai A, Park K, Zhou L, Zachariah M R. Combust. Theor. Model., 2006, 10(5):843.
[18] Levitas V I, Asay B W, Son S F, Pantoya M. Appl. Phys. Lett., 2006, 89(7):71909.
[19] Puri P, Yang V. J. Nanopart. Res., 2010, 12(8):2989.
[20] Henz B J, Hawa T, Zachariah M R. J. Appl. Phys., 2010, 107(2):24901.
[21] Wang Y, Song X, Jiang W, Deng G, Guo X, Liu H, Li F. Trans. Nonferrous Met. Soc. China, 2014, 24(1):263.
[22] 郑保辉(Zheng B H), 王平胜(Wang P S), 罗观(Luo G), 卢校军(Lu X J). 含能材料(Chin. J. Energ. Mater.), 2015, 23(10):1004.
[23] Bockmon B S, Pantoya M L, Son S F, Asay B W, Mang J T. J. Appl. Phys., 2005, 98(6):64903.
[24] Chakraborty P, Zachariah M R. Combust. Flame, 2014, 161(5):1408.
[25] Sullivan K T, Kuntz J D, Gash A E. Propell. Explos. Pyrot., 2014, 39(3):407.
[26] Kim K. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2014, 8(7):685.
[27] Weir C, Pantoya M L, Daniels M A. Combust. Flame, 2013, 160(10):2279.
[28] Prentice D, Pantoya M L, Gash A E. Energy Fuels, 2006, 20(6):2370.
[29] Pantoya M L, Granier J J. Propell. Explos. Pyrot., 2005, 30(1):53.
[30] Mann A B, Gavens A J, Reiss M E, Van Heerden D, Bao G, Weihs T P. J. Appl. Phys., 1997, 82(3):1178.
[31] Lee S H, Lee J H, Lee Y H, Shin D H, Kim Y S. Mater. Sci. Eng., A, 2000, 281(1/2):275.
[32] Farley C W, Pantoya M L, Levitas V I. Combust. Flame, 2014, 161(4):1131.
[33] Pantoya M L, Levitas V I, Granier J J, Henderson J B. J. Propul. Power, 2009, 25(2):465.
[34] Collins E S, Gesner J P, Pantoya M L, Daniels M A. J. Electrostat., 2013, 72(1):28.
[35] Gesner J, Pantoya M L, Levitas V I. Combust. Flame, 2012, 159(11):3448.
[36] Chowdhury S, Sullivan K, Piekiel N, Zhou L, Zachariah M R. J. Phys. Chem. C, 2010, 114(20):9191.
[37] Trunov M A, Schoenitz M, Zhu X, Dreizin E L. Combust. Flame, 2005, 140(4):310.
[38] Wang L, Luss D, Martirosyan K S. J. Appl. Phys., 2011, 110(7):74311.
[39] Levitas V I. Phil. Trans. R. Soc. A, 2013, 371:20120215.
[40] Sanders V E, Asay B W, Foley T J, Tappan B C, Pacheco A N, Son S F. J. Propul. Power, 2007, 23(4):707.
[41] Dutro G M, Yetter R A, Risha G A, Son S F. Proc. Combust. Inst., 2009, 32(2):1921.
[42] Park C D, Mileham M, Burgt L J V D, Muller E A, Stiegman A E. J. Phys. Chem. C, 2010, 114(6):2814.
[43] Sullivan K T, Piekiel N W, Wu C, Chowdhury S, Kelly S T, Hufnagel T C, Fezzaa K, Zachariah M R. Combust. Flame, 2012, 159(1):2.
[44] Ahn J Y, Kim W D, Cho K, Lee D, Kim S H. Powder Technol., 2011, 211(1):65.
[45] Wang J, Qiao Z, Shen J, Li R, Yang Y, Yang G. Propell. Explos. Pyrot., 2015, 40(4):514.
[46] Doorenbos Z, Puszynski J, Kapoor D. 2009 AIChE Annual Meeting. Nashville TN:2009.
[47] Doorenbos Z, Walters I, Redner P, Kapoor D, Balas-Hummers W, Swiatkiewicz J, Puszynski J. AIP Conf. Proc., 2012, 1426:547.
[48] Hu X, Liao X, Xiao L, Jian X, Zhou W. Propell. Explos. Pyrot., 2015, 40(6):867.
[49] Jacob R J, Jian G, Guerieri P M, Zachariah M R. Combust. Flame, 2015, 162(1):258.
[50] Egan G C, Sullivan K T, Lagrange T, Reed B W, Zachariah M R. J. Appl. Phys., 2014, 115(8):84903.
[51] Sullivan K, Zachariah M. J. Propul. Power, 2010, 26(3):467.
[52] Steelman R, Clark B, Pantoya M L, Heaps R J, Daniels M A. J. Electrostat., 2015, 76:102.
[53] Prentice D, Pantoya M L, Clapsaddle B J. J. Phys. Chem. B, 2005, 109(43):20180.
[54] Patel V K, Ganguli A, Kant R, Bhattacharya S. RSC Adv., 2015, 5:14967.
[55] Martirosyan K S, Zyskin M, Jenkins C M, Yuki Horie Y. J. Appl. Phys., 2014, 115(10):104903.
[56] Baijot V, Glavier L, Ducéré J, Djafari Rouhani M, Rossi C, Estève A. Propell. Explos. Pyrot., 2015, 40(3):402.
[57] Balakir É A, Bushuev Y G, Bareskov N A, Kosyakin A E, Kudryavtsev Y V, Fedorova O N. Combust. Explos. Shock Waves, 1975, 11(11):36.
[58] Weismiller M R, Lee J G, Yetter R A. Proc. Combust. Inst., 2011, 33:1933.
[59] Perry W L, Tappan B C, Reardon B L, Sanders V E, Son S F. J. Appl. Phys., 2007, 101(6):64313.
[60] Ingenito A, Bruno C. J. Propul. Power, 2012, 20(6):1056.
[61] Risha G A, Son S F, Yetter R A, Yang V, Tappan B C. Proc. Combust. Inst., 2007, 31(2):2029.
[62] Williams R A, Patel J V, Ermoline A, Schoenitz M, Dreizin E L. Combust. Flame, 2013, 160(3):734.
[63] Jian G, Chowdhury S, Sullivan K, Zachariah M R. Combust. Flame, 2013, 160(2):432.
[64] Lynch P, Fiore G, Krier H, Glumac N. Combust. Sci. Technol., 2010, 182(7):842.
[65] Piekiel N W, Zhou L, Sullivan K T, Chowdhury S, Egan G C, Zachariah M R. Combust. Sci. Technol., 2014, 186(9):1209.
[66] Zhou L, Piekiel N, Chowdhury S, Zachariah M R. J. Phys. Chem. C, 2010, 114(33):14269.
[67] 杨光成(Yang G C), 谯志强(Qiao Z Q). 含能材料(Chin. J. Energ. Mater.), 2014, 22(3):279.
[68] Tappan A S, Long G T, Renlund A M, Kravitz S H, 41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada:AIAA Journal, 2003. 242.
[69] Son S F, Asay B W, Foley T J, Yetter R A, Wu M H, Risha G A. J. Propul. Power, 2007, 23(4):715.
[70] Dutro G. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford CT, 2008. 4717.
[71] 杨光成(Yang G C). 中国工程物理研究院科技年报(Sci. Technol. Rep. CAEP), 2015. 33.
[72] Williams R A, Patel J V, Dreizin E L. J. Propul. Power, 2014, 30(3):765.
[73] Schoenitz M, Umbrajkar S M, Dreizin E L. J. Propul. Power, 2007, 23(4):683.
[74] Stacy S C, Pantoya M L. Int. J. Energetic Mater. Chem. Propul., 2012, 11(4):293.
[75] Stacy S C, Pantoya M L. Propell. Explos. Pyrot., 2013, 38(3):441.
[76] Monk I, Williams R, Liu X, Dreizin E L. Combust. Sci. Technol., 2015, 187(8):1276.
[77] Malchi J Y, Yetter R A, Foley T J, Weismiller M R. Proc. Combust. Inst., 2009, 32(2):1895.
[78] Farley C W, Pantoya M L, Losada M, Chaudhuri S. J. Chem. Phys., 2013, 139(7):74701.
[79] Dikici B, Pantoya M L, Levitas V. Combust. Flame, 2010, 157(8):1581.
[80] Walter K C, Aumann C E, Carpenter R D, O'Neill E H, Pesiri D R. MRS Proceedings, 2003, 800:AA1.3.
[81] Puszynski J A. MRS Proceedings, 2003, 800:AA6.4.
[82] Dubois C, Lafleur P G, Roy C. J. Propul. Power, 2007, 23(4):651.
[83] Kwon Y S, Gromov A A, Ilyin A P, Rim G H. Appl. Surf. Sci., 2003, 211(1):57.
[84] Ermoline A, Schoenitz M, Dreizin E, Yao N. Nanotechnol., 2002, 13(5):638.
[85] Zhang S, Schoenitz M, Dreizin E L. MRS Proceedings, 2013, 1521:130.
[86] Tomar V, Zhou M. 14th APS Topical Conference on Shock Compression of Condensed Matter. Baltimore:2005, 413.
[87] Tomar V, Zhou M. Mater. Sci. Forum, 2004, 465/466:157.
[88] Tomar V, Zhou M. MRS Proc., 2004, 821:3.27.1.
[89] Tomar V. Doctor Dissertation of Georgia Institute of Technology, 2005.
[90] Martirosyan K S, Zyskin M, Jenkins C M, Horie Y. J. Appl. Phys., 2012, 112(9):94319.
[91] 王亚军(Wang Y Y), 江自生(Jiang Z Z), 冯长根(Feng C G). 化学进展(Prog. Chem.), 2016, 28(2/3):391.
[92] Martirosyan K S, Zyskin M. Appl. Phys. Lett., 2012, 102(5):53112.
[93] Fromhold A T, Cook E L. Phys. Rev., 1967, 163(3):650.
[94] Cabrera N, Mott N F. Rep. Prog. Phys., 1949, 12(1):163.
[95] Shaw B D, Pantoya M L, Dikici B. Combust. Theor. Model., 2013, 17(1):25.
[96] Zhou L, Piekiel N, Chowdhury S, Lee D, Zachariah M R. J. Appl. Phys., 2009, 106(8):83306.
[97] Zhdanov V P, Kasemo B. Chem. Phys. Lett., 2008, 452(4/6):285.
[98] Trunov M A, Schoenitz M, Dreizin E L. Combust. Theor. Model., 2006, 10(4):603.
[99] Trunov M A, Schoenitz M, Dreizin E L. Propell. Explos. Pyrot., 2005, 30(1):36.
[100] Jeurgens L P H, Sloof W G, Tichelaar F D, Mittemeijer E J. J. Appl. Phys., 2002, 92(3):1649.
[101] Jeurgens L P H, Sloof W G, Tichelaar F D, Mittemeijer E J. Phys. Rev. B:Condens. Matter, 2000, 62(7):4707.
[102] Dwivedi R K, Gowda G. J. Mater. Sci. Lett.,1985, 4(3):331.
[103] Levitas V I, Pantoya M L, Dikici B. Appl. Phys. Lett., 2008, 92(1):11921.
[104] Levitas V I, Asay B W, Son S F, Pantoya M. J. Appl. Phys., 2007, 101(8):83524.
[105] Levitas V I. Combust. Flame, 2009, 156(2):543.
[106] Levitas V I, Dikici B, Pantoya M L. Combust. Flame, 2011, 158(7):1413.
[107] Levitas V I, Pantoya M L, Chauhan G, Rivero I. J. Phys. Chem. C, 2009, 113(32):14088.
[108] Levitas V I, Mccollum J, Pantoya M L, Tamura N. J. Appl. Phys., 2015, 118(9):94305.
[109] Shimojo F, Nakano A, Kalia R K, Vashishta P. Phys. Rev. E:Stat. Nonlinear Soft Matter Phys., 2008, 77:066103.
[110] Shimojo F, Nakano A, Kalia R K, Vashishta P. Appl. Phys. Lett., 2009, 95(4):43114.
[111] Zhang K, Rossi C, Ardila Rodriguez G A, Tenailleau C, Alphonse P. Appl. Phys. Lett., 2007, 91(11):113117.
[112] Bulian C J, Swiatkiewicz J J, Puszynski J A. 2005 AIChE Annual Meeting, 511d.
[113] Kappagantula K, Crane C, Pantoya M. Propell. Explos. Pyrot., 2014, 39(3):434.
[114] Egan G C, Zachariah M R. Combust. Flame, 2015, 162(7):2959.
[115] Stamatis D, Ermoline A, Dreizin E L. Combust. Theor. Model., 2012, 16(6):1011.
[116] Ermoline A, Dreizin E L. Chem. Phys. Lett., 2011, 505(1/3):47.
[117] Jian G, Piekiel N W, Zachariah M R. J. Phys. Chem. C, 2012, 116(51):26881.
[118] Sullivan K T, Chiou W, Fiore R, Zachariah M R. Appl. Phys. Lett., 2010, 97(13):133104.
[119] Jacob R J, Jian G, Guerieri P M, Zachariah M R. 52nd Aerospace Sciences Meeting. National Harbor, Maryland:2014, 0816.
[120] Zhang S, Schoenitz M, Dreizin E L. Combust. Sci. Technol., 2013, 185(9):1360.
[121] Dikici B, Dean S, Pantoya M L, Levitas V I. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver:2009, 518.
[122] Kappagantula K S, Farley C, Pantoya M L, Horn J. J. Phys. Chem. C, 2012, 116(46):24469.
[123] Kappagantula K S, Pantoya M L, Horn J. Surf. Coat. Technol., 2013, 237:456.
[124] Puszynski J A, Bulian C J, Swiatkiewicz J J. J. Propul. Power, 2007, 23(4):698.
[125] Mehendale B, Shende R, Subramanian S, Gangopadhyay S, Redner P, Kapoor D, Nicolich S. J. Propul. Power, 2006, 24(4):341.
[126] Jian G, Lu L, Zachariah M R. Adv. Funct. Mater., 2013, 23:1341.
[127] Patel V K, Bhattacharya S. ACS Appl. Mater. Interfaces, 2013, 5:13364.
[128] Mulamba O, Pantoya M L. Appl. Surf. Sci., 2014, 315:90.
[129] Valliappan S, Swiatkiewicz J, Puszynski J A. Powder Technol., 2005, 156(2/3):164.
[130] Sullivan K, Young G, Zachariah M. Combust. Flame, 2009, 156(2):302.
[131] Malchi J Y, Yetter R A, Foley T J, Son S F. Combust. Sci. Technol., 2008, 180(7):1278.
[132] Poper K H, Collins E S, Pantoya M L, Daniels M A. J. Electrostat., 2014, 72(5):428.
[133] Zachariah M R. Propell. Explos. Pyrot., 2013, 38(1):7.
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[8] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[9] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[10] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[11] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[12] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[13] 王亚军, 江自生, 冯长根. 亚稳态分子间复合物Al/Bi2O3及其应用[J]. 化学进展, 2016, 28(2/3): 391-400.
[14] 杨越, 刘琪英, 蔡炽柳, 谈金, 王铁军, 马隆龙. 木质纤维素催化转化制备DMF和C5/C6烷烃[J]. 化学进展, 2016, 28(2/3): 363-374.
[15] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.