English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1550-1559 DOI: 10.7536/PC160516 前一篇   后一篇

• 综述与评论 •

非TiO2光催化剂去除气态VOCs

张晓东1*, 杨阳1, 李红欣1, 邹学军2*, 王玉新3*   

  1. 1. 上海理工大学环境与建筑学院环境与低碳科学研究中心 上海 200093;
    2. 大连民族大学环境与资源学院 大连 116600;
    3. 台州职业技术学院应用生物技术研究所 台州 318000
  • 收稿日期:2016-05-01 修回日期:2016-08-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 张晓东, 邹学军, 王玉新 E-mail:fatzhxd@126.com;zouxuejun@dlnu.edu.cn;wyx790914@aliyun.com
  • 基金资助:
    国家自然科学基金项目(No.21507086)和上海市青年科技英才扬帆计划(No.14YF1409900,16YF1408100)资助

Non-TiO2 Photocatalysts Used for Degradation of Gaseous VOCs

Zhang Xiaodong1*, Yang Yang1, Li Hongxin1, Zou Xuejun2*, Wang Yuxin3*   

  1. 1. Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. College of Environment and Resources, Dalian Nationalities University, Dalian 116600, China;
    3. Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou 318000, China
  • Received:2016-05-01 Revised:2016-08-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21507086) and Shanghai Sailing Program (No. 14YF1409900, 16YF1408100).
本文综述了近年来非TiO2光催化剂降解气态挥发性有机物(VOCs)的研究现状。对一些有代表性的新型光催化剂,如金属氧化物、宽带隙p区金属氧化物/氢氧化物、钙钛矿类、尖晶石类、铋系化合物、钒系化合物等的结构与光催化性能之间的关系进行分析。另外,本文从VOCs初始浓度、流速、光源、光强、温度、湿度等光催化反应的工艺条件出发,概述了工艺参数对VOCs废气净化效果影响的研究进展;并对目前非TiO2光催化剂研究中存在的主要问题进行总结并展望。
In this paper, research progress about the utilization of non-TiO2 photocatalysts in degradation of gaseous VOCs are reviewed. We give a concise overview of several novel non-TiO2 photocatalysts with a focus in their structure, which affect the catalytic activities, including metal oxide, wide bandgap p-block metal oxides/hydroxides, perovskite-type, spinel-type, bismuth based compounds, vanadium based compounds, et al. In addition, the research progress of influence factors of non-TiO2 photocatalytic purification of gaseous VOCs exhaust is summarized from photocatalytic reaction conditions (such as VOCs initial concentration, flow rate, light source, light intensity, reaction temperature and humidity). Finally, the fundamental challenges and perspectives of non-TiO2 photocatalysts are briefly brought up.

Contents
1 Introduction
2 Non-TiO2 photocatalytic oxidation of VOCs
2.1 Metal oxide photocatalysts
2.2 Wide bandgap p-block metal oxides/hydroxides photocatalysts
2.3 Perovskite-type oxides photocatalysts
2.4 Spinel-type photocatalysts
2.5 Bismuth based photocatalysts
2.6 Vanadium based photocatalysts
2.7 Other photocatalysts
3 The effect of process parameters on VOCs purification
3.1 The initial concentration of VOCs and flow rate
3.2 The light source and light intensity
3.3 Temperature and humidity
3.4 Other parameters
4 Conclusion and outlook

中图分类号: 

()
[1] Ou J M, Zheng J Y, Li R R, Huang X B, Zhong Z M, Zhong L J, Lin H. Sci. Total Environ., 2015, 530/531:393.
[2] 张晓东(Zhang X D), 王吟(Wang Y), 杨一琼(Yang Y Q), 陈丹(Chen D).物理化学学报(Acta Physico-Chimica Sinica), 2015, 31(9):1633.
[3] Fujishima A, Honda K. Nature, 1972, 238:37.
[4] 邹学军(Zou X J), 李新勇(Li X Y), 曲振平(Qu Z P), 王疆疆(Wang J J). 环境科学(Environmental Science), 2011, 32(12):3694.
[5] 邹学军(Zou X J), 李新勇(Li X Y), 肇启东(Zhao Q D), 陈国华(Chen G H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33(5):1046.
[6] Zou X J, Li X Y, Qu Z P, Zhao Q D, Shi Y, Chen Y Y, Tade M, Liu S M. Mater. Res. Bull., 2012, 47:279.
[7] Zou X J, Li X Y, Zhao Q D, Liu S M. J. Colloid Interface Sci., 2012, 383:13.
[8] Li X Y, Zou X J, Qu Z P, Zhao Q D, Wang L Z. Chemosphere, 2011, 83:674.
[9] Zou X J, Dong Y Y, Zhang X D, Cui Y B. Appl. Surf. Sci., 2016, 366:173.
[10] Fagan R, McCormack D E, Dionysiou D D, Pillai S C. Mater. Sci. Semicond. Process., 2016, 42:2.
[11] Huang Y, Ho S S H, Lu Y F, Niu R Y, Xu L F, Cao J J, Lee S C. Molecules, 2016, 21:56.
[12] 崔星(Cui X), 石建稳(Shi J W),陈少华(Chen S H). 化工进展(Chemical Industry and Engineering Progress), 2013, 32(10):2377.
[13] 王会香(Wang H X), 姜东(Jiang D), 吴东(Wu D), 李德宝(Li D B), 孙予罕(Sun Y H). 化学进展(Progress in Chemistry), 2012, 24(11):2116.
[14] Wang Y X, Li X Y, Lu G, Quan X, Chen G H. J. Phys. Chem. C, 2008, 112:7332.
[15] Wang Y X, Li X Y, Lu G, Chen G H, Chen Y Y. Mater. Lett., 2008, 62:2359.
[16] Wang Y X, Li X Y, Wang N, Quan X, Chen Y Y. Sep. Purif. Technol., 2008, 62:727.
[17] Liao Y C, Xie C S, Liu Y, Huang Q W. J. Alloys Compd., 2013, 550:190.
[18] Rezaee A, Rangkooy H, Khavanin A, Jafari A J. Environ. Chem. Lett., 2014, 12:353.
[19] Xie W, Li Y Z, Shi W Q, Zhao L, Zhao X J, Fang P F, Zheng F, Wang S J. Chem. Eng. J., 2013, 213:218.
[20] Wang Y X, Yang Y Q, Xi L M, Zhang X D, Jia M H, Xu H M, Wu H G. Mater. Lett., 2016, 180:55.
[21] Yang Y Q, Li H X, Hou F L, Hu J Y, Zhang X D, Wang Y X. Mater. Lett., 2016, 180:97.
[22] Zhang X D, Wang Y X, Hou F L, Li H X, Yang Y, Yang Y Q, Wang Y. Appl. Surf. Sci., doi:10.1016/j.apsusc.2016.06.109.
[23] Chu D R, Mo J H, Peng Q, Zhang Y P, Wei Y G, Zhuang Z B, Li Y D. ChemCatChem., 2011, 3:371.
[24] Zhang F, Li X Y, Zhao Q D, Zhang Q Z, Tadé M, Liu S M. J. Colloid Interface Sci., 2015, 457:18.
[25] 曲振平(Qu Z P), 张晓东(Zhang X D), 陈丹(Chen D), 李新勇(Li X Y), 闻梦(Weng M), 王奕(Wang Y), 马丁(Ma D), 吴晶晶(Wu J J). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(7):1605.
[26] Qu Z P, Yu F L, Zhang X D, Wang Y, Gao J S. Chem. Eng. J., 2013, 229:522.
[27] Mao M Y, Lv H Q, Li Y Z, Yang Y, Zeng M, Li N, Zhao X J. ACS Catal., 2016, 6:418.
[28] Li Y Z, Sun Q, Kong M, Shi W Q, Huang J C, Tang J W, Zhao X J. J. Phys. Chem. C, 2011, 115:14050.
[29] Qu Z P, Bu Y B, Qin Y, Gao K, Wang Y, Fu Q. Appl. Catal. B, 2013, 132/133:353.
[30] Qu Z P, Bu Y B, Qin Y, Wang Y, Fu Q. Chem. Eng. J., 2012, 209:163.
[31] Liu F, Zeng M, Li Y Z, Yang Y, Mao M Y, Zhao X J. Adv. Funct. Mater., 2016, 26:4518.
[32] Yu F L, Qu Z P, Zhang X D, Fu Q, Wang Y. J. Energy Chem., 2013, 22(6):845.
[33] Jiang D, Wang W Z, Zhang L, Qiu R H, Sun S M, Zheng Y L. Appl. Catal. B, 2015, 165:399.
[34] Wang G, Huang B B, Lou Z Z, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Appl. Catal. B, 2016, 180:6.
[35] Zheng Y L, Wang W Z, Jiang D, Zhang L. Chem. Eng. J., 2016, 284:21.
[36] Ma Y, Li Y Z, Mao M Y, Hou J T, Zeng M, Zhao X J. J. Mater. Chem. A, 2015, 3:5509.
[37] Hou J T, Li Y Z, Mao M Y, Yue Y Z, Greaves G N, Zhao X J. Nanoscale, 2015, 7:2633.
[38] Mao M Y, Li Y Z, Hou J T, Zeng M, Zhao X J. Appl. Catal. B, 2015, 174:496.
[39] Liu H H, Li Y Z, Yang Y, Mao M Y, Zeng M, Lan L, Yun L, Zhao X J. J. Mater. Chem. A, 2016, 4:9890.
[40] Zheng Y L, Wang W Z, Jiang D, Zhang L, Li X M, Wang Z. J. Mater. Chem. A, 2016, 4:105.
[41] 李朝晖(Li Z H), 刘平(Liu P), 付贤智(Fu X Z). 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26(4):877.
[42] Hou Y D, Wu L, Wang X C, Ding Z X, Li Z H, Fu X Z. J. Catal., 2007, 250:12.
[43] Sun M, Li D Z, Zhang W J, Fu X Z, Shao Y, Li W J, Xiao G C, He Y H. Nanotechnology, 2010, 21(35):355601.
[44] Li Z H, Xie Z P, Zhang Y F, Wu L, Wang X X, Fu X Z. J. Phys. Chem. C, 2007, 111:18348.
[45] Yan T J, Long J L, Chen Y S, Wang X X, Li D Z, Fu X Z. C. R. Chimie., 2008, 11:101.
[46] Xue H, Li Z H, Wu L, Ding Z X, Wang X X, Fu X Z. J. Phys. Chem. C, 2008, 112:5850.
[47] Sun M, Li D Z, Zhang W J, Chen Z X, Huang H J, Li W J, He Y H, Fu X Z. J. Phys. Chem. C, 2009, 113:14916.
[48] Huang R K, Xu X M, Zhu J, Liu W J, Yuan R S, Fu X Z, Zhang Y F, Li Z H. Appl. Catal. B, 2012, 127:205.
[49] Fu X L, Wang X X, Ding Z X, Y.C. Leung D, Zhang Z Z, Long J L, Zhang W X, Li Z H, Fu X Z. Appl. Catal. B, 2009, 91:67.
[50] Fu X L, Huang D W, Qin Y, Li L F, Jiang X L, Chen S F. Appl. Catal. B, 2014, 148/149:532.
[51] Huang D W, Fu X L, Long J L, Jiang X L, Chang L, Meng S G, Chen S F. Chem. Eng. J., 2015, 269:168.
[52] Li H Q, Hong W S, Cui Y M, Jia Q F, Fan S H. J. Mol. Catal. A, 2013, 378:164.
[53] Meng S G, Li D Z, Sun M, Li W J, Wang J X, Chen J, Fu X Z, Xiao G C. Catal. Commun., 2011, 12:972.
[54] Sun M, Li D Z, Zheng Y, Zhang W J, Shao Y, Chen Y B, Li W J, Fu X Z. Environ. Sci. Technol., 2009, 43:7877.
[55] Luo Y P, Chen J, Liu J W, Shao Y, Li X F, Li D Z. Appl. Catal. B, 2016, 182:533.
[56] Marchelek M, Bajorowicz B, Mazierski P, Cybula A, Klimczuk T, Winiarski M, Fija?kowsk N, Zaleska A. Catal. Today, 2015, 252:47.
[57] Nath R K, Zain M F M, Kadhum A A H, Kaish A B M A. Constr. Build Mater., 2014, 54:348.
[58] Chen Y B, Li D Z, Chen J, Wang J X, Meng S G, Xian J G, Fu X Z, Shao Y. Appl. Catal. B, 2013, 129:403.
[59] Zhang X N, Huang J H, Ding K N, Hou Y D, Wang X C, Fu X Z. Environ. Sci. Technol., 2009, 43:5947.
[60] Sun M, Li D Z, Zhang W J, Chen Z X, Huang H J, Li W J, He Y H, Fu X Z. J. Solid State Chem., 2012, 190:135.
[61] Li X Y, Zhu Z R, Zhao Q D, Wang L Z. J. Hazard. Mater., 2011, 186:2089.
[62] Zhu Z R, Zhao Q D, Li X Y, Li H, Moses T, Liu S M. Catal. Sci. Technol., 2013, 3:788.
[63] Zhu Z R, Liu F Y, Zhang W. Mater. Res. Bull., 2015, 64:68.
[64] Zhu Z R, Li X Y, Zhao Q D, Li H, Shen Y, Chen G H. Chem. Eng. J., 2010, 165:64.
[65] Ai Z H, Lee S C, Huang Y, Ho W K, Zhang L Z. J. Hazard. Mater., 2010,179:141.
[66] He R A, Cao S W, Zhou P, Yu J G. Chin. J. Catal., 2014, 35:989.
[67] Zou X J, Dong Y Y, Zhang X D, Cui Y B, Ou X X, Qi X H. Appl. Surf. Sci., doi:10.1016/j.apsusc.2016.06.003.
[68] Ai Z H, Huang Y, Lee S C, Zhang L Z. J. Alloys Compd., 2011, 509:2044.
[69] Rifath S, Ray M. B. J. Air Waste Manage. Assoc., 2012, 62(9):1032.
[70] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013, 264:581.
[71] Cheng J, Shi S X, Tang T T, Tian S Q, Yang W J, Zeng D W. J. Alloys Compd., 2015, 643:159.
[72] Chen Y L, Cao X X, Kuang J D, Chen Z, Chen J L, Lin B Z. Catal. Commun., 2010, 12:247.
[73] Guo S, Li X F, Wang H Q, Dong F, Wu Z B. J. Colloid Interface Sci., 2012, 369:373.
[74] 吴大旺(Wu D W), 李硕(Li S), 陈耀强(Chen Y Q), 龚茂初(Gong M C), 张秋林(Zhang Q L),刘康莲(Liu K L), 王玉林(Wang Y L).物理化学学报(Acta Physico-Chimica Sinica), 2010, 26(12):3299.
[75] 李思佳(Li S J), 邹学军(Zou X J), 董玉瑛(Dong Y Y), 李新勇(Li X Y), 杨宝灵(Yang B L). 化工环保(Environmental Protection of Chemical Industry), 2015, 35(2):182.
[76] Chang W S, Li Y C M, Chung T W, Lin Y S, Huang C M. Appl. Catal. A, 2011, 407:224.
[77] 陈亦琳(Chen Y L), 操小鑫(Cao X X), 林碧洲(Lin B Z).无机材料学报(Journal of Inorganic Materials), 2011, 26(5):508.
[78] He Y M, Zhao L H, Wang Y J, Lin H J, Li T T, Wu X T, Wu Y. Chem. Eng. J., 2011, 169:50.
[79] Chen F, Wu T H, Zhou X P. Catal. Commun., 2008, 9:1698.
[80] Luo L, Li Y Z, Hou J T, Yang Y. Appl. Surf. Sci., 2014, 319:332.
[81] Kontelles-carceller O, Muñoz-Batista M J, Fernández-García M, Kubacka A. ACS Appl. Mater., 2016, 8:2617.
[82] Zou X J, Dong Y Y, Li X Y, Zhao Q D, Cui Y B, Lu G. Catal. Commun., 2015, 69:109.
[83] Zou X J, Ran C Q, Dong Y Y, Chen Z B, Dong D P, Hu D X, Li X Y, Cui Y B. RSC Adv., 2016, 6:20664.
[84] Anpo M, Shioya Y, Yamashita H, Giamello E, Morterra C, Che M, Patterson H H, Webber S, Ouellette S. J. Phys. Chem., 1994, 98(22):5744.
[85] Yamashita H, Matsuoka M, Tsuji K, Shioya Y, Anpo M. J. Phys. Chem., 1996, 100(1):397.
[86] Kato Y, Yoshida H, Satsuma A, Hattori T. Micropor. Mesopor. Mater., 2002, 51:223.
[87] Yan G Y, Long J L, Wang X X, Li Z H, Fu X Z. C. R. Chimie., 2008, 11:114.
[88] Yan G Y, Wang X X, Fu X Z, Li D Z. Catal. Today, 2004, 93/95:851.
[89] Blatter F, Sun H, Vasenkov S, Frei H. Catal.Today, 1998, 41(4):297.
[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[5] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[8] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[9] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[10] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[11] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[12] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[15] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
阅读次数
全文


摘要

非TiO2光催化剂去除气态VOCs