English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1705-1711 DOI: 10.7536/PC160443 前一篇   后一篇

所属专题: 电化学有机合成 酶化学

• 综述与评论 •

基于碳纳米材料的无酶电化学传感器同时检测抗坏血酸、多巴胺和尿酸

邢立文, 马占芳*   

  1. 首都师范大学化学系 北京 100048
  • 收稿日期:2016-04-01 修回日期:2016-06-01 出版日期:2016-11-15 发布日期:2016-10-09
  • 通讯作者: 马占芳 E-mail:mazhanfang@126.com
  • 基金资助:
    北京市教委科技专项项目(No.009165503200)资助

Non-Enzymatic Electrochemical Sensors Based on Carbon Nanomaterials for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid

Xing Liwen, Ma Zhanfang*   

  1. Depatment of Chemistry, Capital Normal University, Beijing 100048, China
  • Received:2016-04-01 Revised:2016-06-01 Online:2016-11-15 Published:2016-10-09
  • Supported by:
    The work was supported by the Project of the Construction of Scientific Research Base by the Beijing Municipal Education Commission (No. 009165503200).
人体中抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)的浓度失调可能导致一系列疾病,如癌症、老年痴呆症、高尿酸血症等,而且这三个物种通常共存于体液中,有接近的氧化还原电位,因此实现三者的同时检测,既具有一定的难度,又具有极其重要的现实意义。近年来用于同时检测AA、DA和UA的电化学传感器取得了令人瞩目的进展,其中碳材料因其成本低廉、导电性好、稳定性好、比表面积大等特点逐渐引起人们的广泛关注。本文综述了基于碳材料构筑的检测AA、DA和UA的无酶电化学传感器的研究进展,对此类电化学传感器的今后发展做了展望。
The deficiency or maladjustment of ascorbic acid, dopamine, and uric acid in human body may lead to symptoms of many diseases such as cancer, Alzheimer's disease and hyperuricemia. The three species usually coexist in body fluid and possess adjacent redox potentials, thus it is extremely important and challenging to accomplish the simultaneous detection of these species. In recent years, electrochemical sensors for simultaneous detection of ascorbic acid, dopamine, and uric acid, have made a great progress. Especially, carbon nanomaterials draw considerable attentions owing to their intrinsic properties such as low cost, excellent conductivity, chemical stability, large specific surface area etc. This review mainly focuses on designing non-enzymatic electrochemical sensors based on carbon nanomaterials for simultaneous detection of ascorbic acid, dopamine, and uric acid in recent years. Additionally, the perspective of future development of this type of electrochemical sensors is discussed.

Contents
1 Introduction
2 Carbon nanomaterials-based non-enzymatic electrochemical sensors for simultaneous detection of ascorbic acid, dopamine, and uric acid
2.1 One-dimensional carbon nanomaterials
2.2 Two-dimensional carbon nanomaterials
2.3 Zero-dimensional carbon nanomaterials
2.4 Three-dimensional carbon nanomaterials
3 Conclusion

中图分类号: 

()
[1] Block W D, Geib N C. J. Biol. Chem., 1947, 168:747.
[2] Tiwari J N, Vij V, Kemp C, Kim K S. ACS Nano, 2016, 10:46.
[3] Zhang W, Zhu S Y, Luque R, Han S, Hu L Z, Xu G B. Chem. Soc. Rev., 2016, 45:715.
[4] Chen X M, Wu G H, Cai Z X, Oyama M, Chen X. Microchim. Acta, 2014, 181:689.
[5] Fennell J F, Liu S F, Azzarelli J M, Weis J G, Rochat S, Mirica K A, Swager T M. Angew. Chem. Int. Ed., 2016, 55:1266.
[6] Ganesh H V, Chow A M, Kerman K. TrAC-Trend Anal. Chem., 2016, 79:363.
[7] Adams R N. Anal. Chem., 1958, 30:1576.
[8] Wang Y, Shao Y, Matson D W, Li J H, Lin Y H. ACS Nano, 2010, 4:1790.
[9] Lin Y, Ren J, Qu X. Acc. Chem. Res., 2014, 47:1097.
[10] Sun H, Zhao A, Gao N, Li K, Ren J, Qu X. Angew. Chem. Int. Ed., 2015, 54:7176.
[11] Wu K B, Hu S S. Microchim. Acta, 2004, 144:131.
[12] Zhang M, Gong K, Zhang H, Mao L. Biosens. Bioelectron., 2005, 20:1270.
[13] Sun C L, Chang C T, Lee H H, Zhou J, Wang J, Sham T K, Pong W F. ACS Nano, 2011, 5:7788.
[14] Sun C L, Su C H, Wu J J. Biosens. Bioelectron., 2015, 67:327.
[15] Zhang Y, Yuan R, Chai Y, Li W, Zhong X, Zhong H. Biosens. Bioelectron., 2011, 26:3977.
[16] Luo H, Shi Z, Li N, Gu Z, Zhuang Q. Anal. Chem., 2001, 73:915.
[17] Cheng H, Qiu H, Zhu Z, Li M, Shi Z. Electrochim. Acta, 2012, 63:83.
[18] Cheng H, Guan L, Shi Z, Zhu Z, Gu Z, Li M. Electroanalysis, 2013, 25:2041.
[19] Li Y, Du J, Yang J, Liu D, Lu X. Colloids Surf. B, 2012, 97:32.
[20] Huang J, Liu Y, Hou H, You T. Biosens. Bioelectron., 2008, 24:632.
[21] Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y. Biosens. Bioelectron., 2014, 53:220.
[22] Wang Y, Li Y, Tang L, Lu J, Li J. Electrochem. Commun., 2009, 11:889.
[23] Zhou M, Zhai Y, Dong S. Anal. Chem., 2009, 81:5603.
[24] Sun C L, Lee H H, Yang J M, Wu C C. Biosens. Bioelectron., 2011, 26:3450.
[25] Jiang J, Du X. Nanoscale, 2014, 6:11303.
[26] Chen L X, Zheng J N, Wang A J, Wu L J, Chen J R, Feng J J. Analyst, 2015, 140:3183.
[27] Li S M, Wang Y S, Hsiao S T, Liao W H, Lin C W, Yang S Y, Hu C C. J. Mater. Chem. C, 2015, 3:9444.
[28] Zhang X, Zhang Y C, Ma L X. Sens. Actuators B:Chem., 2016, 227:488.
[29] Xing L W, Ma Z F. Microchim. Acta, 2016, 183:257.
[30] Li S J, He J Z, Zhang M J, Zhang R X, Lv X L, Li S H, Pang H. Electrochim. Acta, 2013, 102:58.
[31] Sheng Z H, Zheng X Q, Xu J Y, Bao W J, Wang F B, Xia X H. Biosens. Bioelectron., 2012, 34:125.
[32] Huang Q, Hu S, Zhang H, Chen J, He Y, Li F, Lin Y. Analyst, 2013, 138:5417.
[33] Hu S, Huang Q, Lin Y, Wei C, Zhang H, Zhang W, Hao A. Electrochim. Acta, 2014, 130:805.
[34] Huang Q, Zhang H, Hu S, Li F, Weng W, Chen J, Bao X. Biosens. Bioelectron., 2014, 52:277.
[35] Zhang X, Ma L X, Zhang Y C. Electrochim. Acta, 2015, 177:118.
[36] Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P. ACS Appl. Mater. Interfaces, 2012, 4:3129.
[37] Yue H Y, Huang S, Chang J, Heo C, Yao F, Adhikari S, Li B. ACS Nano, 2014, 8:1639.
[38] Yue H Y, Zhang H, Huang S, Lin X Y, Gao X, Chang J, Guo E J. Biosens. Bioelectron. 2016, DOI:10.1016/j.bios.2016.01.078.
[39] Roy P K, Ganguly A, Yang W H, Wu C T, Hwang J S, Tai Y, Chattopadhyay S. Biosens. Bioelectron., 2015, 70:137.
[40] Ma Y, Zhao M, Cai B, Wang W, Ye Z, Huang J. Chem. Commun., 2014, 50:11135.
[41] Gai P, Zhang H, Zhang Y, Liu W, Zhu G, Zhang X, Chen J. J. Mater. Chem. B, 2013, 1:2742.
[42] Liang C, Li Z, Dai S. Angew. Chem. Int. Ed., 2008, 47:3696.
[43] Gao W, Feng X, Zhang T, Huang H, Li J, Song W. ACS Appl. Mater. Interfaces, 2014, 6:19109.
[1] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[2] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[3] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[4] 陈贺, 张帅其, 赵致雪, 刘萌, 张庆瑞. 多巴胺功能材料在水污染控制中的应用[J]. 化学进展, 2019, 31(4): 571-579.
[5] 李红, 赵媛媛, 彭浩南. 多巴胺基纳米材料在生物医药中的应用[J]. 化学进展, 2018, 30(8): 1228-1241.
[6] 李旭光, 杜婷婷, 刘金, 刘新蕾, 马朋坤, 戚豫, 陈威*. 人工碳纳米材料的环境转化及其效应[J]. 化学进展, 2017, 29(9): 1021-1029.
[7] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[8] 李敏睿, 郭永亮, 杨保平, 郭军红, 崔锦峰. 基于脲衍生物阴离子识别的电化学检测[J]. 化学进展, 2015, 27(5): 559-570.
[9] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[10] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[11] 孙兵, 艾仕云. 光电化学传感器的构建及应用[J]. 化学进展, 2014, 26(05): 834-845.
[12] 向翠丽, 邹勇进, 邱树君, 褚海亮, 孙立贤*, 徐芬*. 基于碳纳米材料载体的氢气传感器[J]. 化学进展, 2013, 25(0203): 270-275.
[13] 张金超*, 杨康宁, 张海松, 梁兴杰*. 碳纳米材料在生物医学领域的应用现状及展望[J]. 化学进展, 2013, 25(0203): 397-408.
[14] 冯晓苗, 李瑞梅, 杨晓燕, 侯文华. 新型碳纳米材料在电化学中的应用[J]. 化学进展, 2012, 24(11): 2158-2166.
[15] 尉艳, 刘中刚, 高超, 王伦, 刘锦淮, 黄行九. 纳米材料电化学与生物传感器--有机微污染物检测新途径[J]. 化学进展, 2012, 24(04): 616-627.