English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1712-1720 DOI: 10.7536/PC160442 前一篇   

所属专题: 酶化学

• 综述与评论 •

唾液酸转移酶抑制剂的设计与发现

郭键1,2, 贺耘1*, 叶新山2*   

  1. 1. 重庆大学药学院 创新药物研究中心 重庆 401331;
    2. 北京大学医学部天然药物及仿生药物国家重点实验室 北京 100191
  • 收稿日期:2016-04-01 修回日期:2016-06-01 出版日期:2016-11-15 发布日期:2016-10-09
  • 通讯作者: 贺耘, 叶新山 E-mail:yun.he@cqu.edu.cn;xinshan@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21072014)资助

Design and Discovery of Sialyltransferase Inhibitors

Guo Jian1,2, He Yun1*, Ye Xin-Shan2*   

  1. 1. School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chonqing University, Chongqing 401331, China;
    2. State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
  • Received:2016-04-01 Revised:2016-06-01 Online:2016-11-15 Published:2016-10-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21072014).
糖缀合物末端的唾液酸化修饰参与了很多重要的生理及病理过程,尤其是肿瘤细胞表面唾液酸过度表达,能够通过多种途径和机制促进肿瘤转移。唾液酸转移酶是人体内负责唾液酸化修饰的合成酶,良好的唾液酸转移酶抑制剂不仅能够充当糖生物学研究的探针分子,而且有望成为临床治疗中亟需的抑制肿瘤转移的药物。本文综述了近年来唾液酸转移酶抑制剂设计及发现的研究进展,重点介绍了不同类型抑制剂的设计思路及构效关系。此外,对该研究领域当前面临的一些挑战进行了探讨,并对其发展趋势进行了展望。
Sialylation at the non-reducing end of glycoconjugates is involved in lots of important physiological and pathological processes. Especially cancer cells express high density of sialic acids known as hypersialylation that contributes to cancer cell progression and metastasis. Sialyltransferase is the glycosyltransferase in charge of sialylation of glycoconjugates. Effective sialyltransferase inhibitors could be not only of medicinal interests, especially in the therapy of cancer diseases, but also biological probes for studying fuctions of sialylation in glycobiology. Here we review recent progress of design and discovery of sialyltransferase inhibitors. The major content is about the design of different types of inhibitors and their structure-activity relationship. The current challenges and development trends are also proposed.

Contents
1 Introduction
2 Relationship between sialic acids and cancers
3 Design and discovery of sialyltransferase inhibitors
3.1 Donor-analog inhibitors
3.2 Acceptor-analog inhibitors
3.3 Bisubstrate-analog inhibitors
3.4 Transition-state-analog of the sialyl donor inhibitors
3.5 Other types of inhibitors
4 Conclusion

中图分类号: 

()
[1] Angata T, Varki A. Chem. Rev., 2002, 102:439.
[2] Chen X, Varki A. ACS Chem. Biol., 2010, 5:163.
[3] Büll C, Stoel M A, den Brok M H, Adema G J. Cancer Res., 2014, 74:3199.
[4] Crocker P R, Paulson J C, Varki A, Nat. Rev. Immunol., 2007, 7:255.
[5] 张嘉宁(Zhang J J), 汪淑晶(Wang S J). 生命科学(Chin. Bull. Life Sci.), 2011, 23:678.
[6] Datta A K. Currt. Drug Targets, 2009, 10:483.
[7] Harduin-Lepers A. Glycobiol. Insights, 2010, 2:29.
[8] Horenstein B A, Bruner M. J. Am. Chem. Soc., 1996, 118:10371.
[9] Horenstein B A. J. Am. Chem. Soc.,1997, 119:1101.
[10] Horenstein B A, Bruner M. J. Am. Chem. Soc., 1998, 120:1357.
[11] Rao F V, Rich J R, Rakic B, Buddai S, Schwartz M F, Johnson K, Bowe C, Wakarchuk W W, DeFrees S, Withers S G, Strynadka N C J. Nat. Struct. Mol. Biol., 2009, 16:1186.
[12] Kuhn B, Benz J, Greif M, Engel A M, Sobek H, Rudolph M G. Acta Crystallogr., Sect. D:Biol. Crystallogr., 2013, 69:1826.
[13] Volkers G, Worrall L J, Kwan D H, Yu C, Baumann L, Lameignere E, Wasney G A, Scott N E, Wakarchuk W, Foster L J, Withers S G, Strynadka N C J. Nat. Struct. Mol. Biol., 2015, 22:627.
[14] Yogeeswaran G, Salk P L. Science, 1981, 212:1514.
[15] Schultz M J, Swindall A F, Bellis S L. Cancer Metastasis Rev., 2012, 31:501.
[16] Christian B, Stoel M A, Brok M H D, Adema G J. Cancer Res., 2014, 74:3199.
[17] Irina H, Lubor B. Front. Oncol., 2014, 4:28.
[18] Bos P D, Zhang X H-F, Cristina N, Su W, Gomis R R, Nguyen D X, Minn A J, Vijver M J V D, Gerald W L, Foekens J A. Nature, 2009, 459:1005.
[19] Büll C, den Brok M H, Adema G J. Biochim. Biophys. Acta, Rev. Cancer, 2014, 1846:238.
[20] Amano M, Eriksson H, Manning J C, Detjen K M, André S, Nishimura S I, Lehtiö J, Gabius H J. FEBS J., 2012, 279:4062.
[21] Lu D Y, Lu T R, Wu H Y. Sci. Pharm., 2012, 80:497.
[22] Murugaesu N, Iravani M, van Weverwijk A, Ivetic A, Johnson D A, Antonopoulos A, Fearns A, Jamal-Hanjani M, Sims D, Fenwick K, Mitsopoulos C, Gao Q, Orr N, Zvelebil M, Haslam S M, Dell A, Yarwood H, Lord C J, Ashworth A. Cancer Discov., 2014, 4:304.
[23] Wolfenden R. Enzyme Mechanisms. London:The Royal Society of Chemistry, 1987. 97.
[24] Wang X F, Zhang L H, Ye X S. Med. Res. Rev., 2003, 23:32.
[25] Amann F, Schaub C, Müller B, Schmidt R R. Chem.-Eur. J., 1998, 4:1106.
[26] Whalen L J, McEvoy K A, Halcomb R L. Bioorg. Med. Chem. Lett., 2003, 13:301.
[27] Schaub C, Müller B, Schmidt R. Eur. J. Org. Chem., 2000, 1745.
[28] Schaub C, Muller B, Schmidt R R. Glycoconjugate J., 1998, 15:345.
[29] Imamura M, Hashimoto H. Tetrahedron Lett., 1996, 37:1451.
[30] Izumi M, Wada K, Yuasa H, Hashimoto H. J. Org. Chem., 2005, 70:8817.
[31] Imamura M, Hashimoto H. Chem. Lett., 1996, 25:1087.
[32] Cohen S B, Halcomb R L. J. Org. Chem., 2000, 65:6145.
[33] Chang K, Tao Y S, Li W. Synlett, 2004, 37.
[34] Kumar R, Nasi R, Bhasin M, Huan Khieu N, Hsieh M, Gilbert M, Jarrell H. Zou W, Jennings H J. Carbohyd. Res., 2013, 378:45.
[35] Tanaka T, Ozawa M, Miura T, Inazu, T, Tsuji S, Kajimoto T. Synlett, 2002, 1487.
[36] Burkart D M, Vincent P S, Wong C. Chem. Commun., 1999, 1525.
[37] Burkart M D, Vincent S P, Düffels A, Murray B W, Ley S V, Wong C. Bioorg. Med. Chem., 2000, 8:1937.
[38] Rillahan C D, Antonopoulos A, Lefort C T, Sonon R, Azadi P, Ley K, Dell A, S M Haslam, Paulson J C. Nat. Chem. Biol., 2012, 8:661.
[39] Macauley M S, Arlian B M, Rillahan C D, Pang P C, Bortell N, Marcondes M C G, Haslam S M, Dell A, Paulson J C. J. Biol. Chem., 2014, 289:35149.
[40] Büll C, Boltje T J, van Dinther E A, Peters T, de Graaf A M, Leusen J H, Kreutz M, Figdor C G, den Brok M H, Adema G J. ACS Nano, 2015, 9:733.
[41] Hosoguchi K, Maeda T, Furukawa J, Shinohara Y, Hinou H, Sekiguchi M, Togame H, Takemoto H, Kondo H, Nishimura S. J. Med. Chem., 2010, 53:5607.
[42] Kajihara Y, Kodama H, Wakabayashi T, Sato K, Hashimoto H. Carbohydr. Res., 1993, 247:179.
[43] Okazaki K, Nishigaki S, Ishizuka F, Kajihara Y, Ogawa S. Org. Biomol. Chem., 2003, 1:2229.
[44] Mammen M, Choi S K, Whitesides G M. Angew. Chem. Int. Ed., 1998, 37:2754.
[45] Hinou H, Sun X L, Ito Y. Tetrohedron Lett., 2002, 43:9147.
[46] Hinou H, Sun X L, Ito Y S. J. Org. Chem., 2003, 68:5602.
[47] von Itzstein M, Wu W, Kok G B, Pegg M S, Dyason, J C, Jin B, Phan T V, Smythe M L, White H F, Oliver S W, Colman P M, Varghese J N, Ryan D M, Woods J M, Bethell R C, Hotham V J, Cameron J M, Penn C R. Nature, 1993, 363:418.
[48] Kim C U, Lew W, Williams M A, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen M S, Mendel D B, Tai C Y, Laver W G, Stevens R C. J. Am. Chem. Soc., 1997, 119:681.
[49] Muler B, Schaub C, Schmidt R R. Angew. Chem. Int. Ed., 1998, 37:2893.
[50] Skropeta D, Schwörer R, Haag T, Schmidt R R. Glycoconjugate J., 2004, 21:205.
[51] Schworer R. Doctoral Dissertation of Universitat Konstanz, 2003.
[52] Haag T. Diploma Thesis of Universitat Konstanz, 2000.
[53] Schwörer R, Schmidt R R. J. Am. Chem. Soc., 2002, 124:1632.
[54] Schröder P N, Giannis A. Angew. Chem. Int. Ed., 1999, 38:1379.
[55] Skropeta D, Schworer R, Schmidt R R. Bioorg. Med. Chem. Lett., 2003, 13:3351
[56] Mathew B, Schmidt R R. Carbohyd. Res., 2007, 342:558.
[57] Sun H, Yang J, Amaral K E, Horenstein B A. Tetrahedron Lett., 2001, 42:2451.
[58] Li W, Niu Y, Xiong D C, Cao X, Ye X S. J. Med. Chem., 2015, 58:7972.
[59] Harder P G, Jamieson J C. Glycobiology 1997, 7:791.
[60] Wu C Y, Hsu C C, Chen S T, Tsai Y C. Biochem. Bioph. Res. Commun., 2001, 284:466.
[61] Hidari K I P J, Oyama K, Ito G, Nakayama M, Inai M, Goto S, Kanai Y, Watanabe K, Yoshida K, Furuta T, Kan T, Suzuki T. Biochem. Bioph. Res. Commun., 2009, 382:609.
[62] Rillahan C D, Brown S J, Register A C, Rosen H, Paulson J C. Angew. Chem. Int. Ed., 2011, 50:12534.
[1] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[2] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[3] 闫新, 李意羡, 贾月梅, 俞初一. 糖苷化的亚氨基糖:分离、合成与生物活性[J]. 化学进展, 2019, 31(11): 1472-1508.
[4] 李意羡, 贾月梅, 俞初一. 氟代亚氨基糖的合成与糖苷酶抑制活性[J]. 化学进展, 2018, 30(5): 586-600.
[5] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展, 2018, 30(12): 1992-2002.
[6] 代天志, 孙德群. 抗TB活性化合物的研究[J]. 化学进展, 2018, 30(11): 1784-1802.
[7] 李享, 石家愿, 邱爽, 王明芳, 刘长林*. SOD1抑制与活性氧信号转导的调控[J]. 化学进展, 2018, 30(10): 1475-1486.
[8] 刘如沁, 索志荣, 何乃珍, 陈爽, 黄明. 偶氮桥联二呋咱:合成及其分子结构-熔点的构效关系[J]. 化学进展, 2017, 29(5): 476-490.
[9] 王志鹏, 田长麟, 郑基深. 聚酰胺类多肽二级结构模拟物的结构设计与性质分析[J]. 化学进展, 2016, 28(9): 1328-1340.
[10] 叶霁青, 岳晓虹, 孙丽萍. 小分子IL-6/STAT3信号通路抑制剂[J]. 化学进展, 2016, 28(7): 1099-1111.
[11] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[12] 宋钊宁, 冯翔, 刘熠斌, 杨朝合, 周兴贵. 丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展[J]. 化学进展, 2016, 28(12): 1762-1773.
[13] 李晓晖*, 黄美玲, 刘丽娜, 王燕云. 环肽类组蛋白去乙酰化酶抑制剂[J]. 化学进展, 2014, 26(09): 1527-1536.
[14] 杨冬梅, 周宇涵, 常晴, 赵一龙, 曲景平. 三氟甲基烷基酮的生物活性及合成方法[J]. 化学进展, 2014, 26(06): 976-986.
[15] 赵丽君, 雷鸣. 甲状腺结合前清蛋白的理论研究[J]. 化学进展, 2014, 26(01): 193-202.