English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1634-1647 DOI: 10.7536/PC160410 前一篇   后一篇

• 综述与评论 •

结构明确聚烯烃接枝共聚物:合成、结构与性能

张勇杰1*, 李化毅2,3, 曲敏杰1, 冯钠1, 杨威4, 张翀4   

  1. 1. 大连工业大学纺织与材料工程学院 大连 116034;
    2. 中国科学院化学研究所 北京 100190;
    3. 北京分子科学国家实验室 北京 100190;
    4. 全球能源互联网研究院 先进输电技术国家重点实验室 北京 102209
  • 收稿日期:2016-04-01 修回日期:2016-07-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 张勇杰 E-mail:yjzhang@dlpu.edu.cn
  • 基金资助:
    北京分子科学国家实验室开放课题基金(BNLMS)资助

Well-Defined Polyolefin Graft Copolymers: Syntheses, Structures, and Properties

Zhang Yongjie1*, Li Huayi2,3, Qu Minjie1, Feng Na1, Yang Wei4, Zhang Chong4   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    3. Beijing National Laboratory for Molecular Sciences(BNLMS), Beijing 100190, China;
    4. State Key Laboratory of Advanced Transmission Technology, Global Energy Inter-connection Research Institute, Beijing 102209, China
  • Received:2016-04-01 Revised:2016-07-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    The work was supported by the Open Research Fund from the Beijing National Laboratory for Molecular Sciences (BNLMS).
实现聚烯烃功能化是制备高性能聚烯烃材料、拓展聚烯烃应用的重要手段,几十年来得到了学术界及工业界的广泛关注。聚烯烃接枝共聚物作为一类重要的功能化聚烯烃,包含聚烯烃链段(PE、PP等)及功能化聚合物链段(PS、PMMA、PEG等),因而在提高功能单元含量的同时能保持聚烯烃单元优异的结晶、加工性能。结构明确的聚烯烃接枝共聚物,具有结构参数可控、综合性能可调的特点,对于认识聚合物材料结构-性能关系、拓展聚烯烃应用范围具有重要的学术和实际意义。聚烯烃接枝共聚物的合成方法可以分为三种类型:“共聚接枝(graft-through)”、“引出接枝(graft-from)”、“偶联接枝(graft-onto)”。前两种合成方法往往涉及烯烃配位聚合与其他聚合方式的机理转化过程;其中,反应性聚合物中间体作为大分子引发剂、大分子RAFT试剂、大分子单体参与接枝反应,实现接枝共聚物的可控制备。第三种方法思路简单明确,即利用聚烯烃侧基反应性基团与其他聚合物反应性端基之间的高效偶联反应实现接枝共聚物制备。本文从合成、结构及性能三方面较为全面地综述了结构明确聚烯烃接枝共聚物的研究进展,着重讨论了新兴合成方法及相应接枝共聚物的潜在应用。
Serving as an essential strategy to further expand polyolefin (PO) applications into high performance PO-based materials, functionalization of PO, including preparation of PO segmented graft copolymers, has drawn extensive attention for decades from both academia and industry. PO graft copolymers, containing both PO segments (PP, PE, etc.) and functional polymer segments (PS, PMMA, PEG, etc.), could well retain the excellent properties of PO (crystallinity, processablity) while achieving high functional group concentration. Well defined PO graft copolymers, those with controllable structural parameters (mainly graft density and graft length), are often highly desirable since well-defined structure not only renders tunable chemical and physical properties but also helps to better understand the structure-property relationships, which are crucial to exploring the applications of PO graft copolymers. Three general methods are employed to synthesize well defined PO graft copolymers, namely "graft-through", "graft-from", and "graft-onto". Among them, the further two approaches generally involve mechanism transformation between coordination polymerization and other polymerizations (anionic, radical), where reactive polymer "intermediates" are required, either as macrointiator or macroRAFT agent, or macromonomer. The third approach, which is easier to understand, simply links side-groups functionalized PO and end-groups functionalized polymers together via efficient coupling reactions to form graft architectures. From three aspects, i.e., syntheses, structures and properties, this review outlines the advances in well-defined polyolefin graft copolymers, especially highlighting newly developed synthetic methods (visible light-induced grafting, e.g.) and emerging applications (solid polymer electrolyte, e.g.) of graft copolymers derived thereof.

Contents
1 Introduction
2 Graft-through method
2.1 Polyolefin as backbone
2.2 Polyolefin as graft chain
3 Graft-from method
3.1 Borane Approach
3.2 Tolyl Group
3.3 (hydrochlorinated) Vinylphenyl group
3.4 Hydroxyl
3.5 Inimer
3.6 Non-olefin-coordination-polymerization approach
4 Graft-onto method
5 Conclusion

中图分类号: 

()
[1] Franssen N M, Reek J N, de Bruin B. Chem. Soc. Rev., 2013, 42:5809.
[2] Passaglia E, Coiai S, Cicogna F, Ciardelli F. Polym. Int., 2014, 63:12.
[3] 胡友良(Hu Y L),乔金梁(Qiao J L),吕立新(Lv L X), 聚烯烃功能化及改性:科学与技术(Functionalization and Modification of Polyolefins:Science and Technology). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2006.
[4] Chung T C. Prog. Polym. Sci., 2002, 27:39.
[5] Dong J Y, Hu Y. Coord. Chem. Rev., 2006, 250:47.
[6] 吴昊天(Wu H T), 吕弛(Lv C), 姜涛(Jiang T), 崔崑(Cui K), 马志(Ma Z). 化工进展(Chemical Industry and Engineering Progress), 2015, 34:1699.
[7] Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X. Chem. Soc. Rev., 2011, 40:1282.
[8] Endo K, Senoo K, Takakura Y. Eur. Polym. J., 1999, 35:1413.
[9] Zhao Y, Wang L, Xiao A, Yu H. Prog. Polym. Sci., 2010, 35:1195.
[10] Mohanty A D, Bae C. Advances in Organometallic Chemistry, Elsevier Science Publishing Co Inc, 2015.Vol. 64, 1.
[11] Ma J, Pang D, Huang B. J. Polym. Sci. Part A:Polym. Chem., 1986, 24:2853.
[12] Endo K, Senoo K. Polym. J., 1999, 31:817.
[13] Henschke O, Neubauer A, Arnold M. Macromolecules, 1997, 30:8097.
[14] Arnold M, Knorr J, Köller F, Bornemann S. J. Macromol. Sci. Pure Appl. Chem., 1999, 36:1655.
[15] Matyjaszewski K, Tsarevsky N V. J. Am. Chem. Soc., 2014, 136:6513.
[16] Schulze U, Fónagy T, Komber H, Pompe G, Pionteck J, Iván B. Macromolecules, 2003, 36:4719.
[17] Fónagy T, Schulze U, Komber H, Voigt D, Pionteck J, Iván B. Macromolecules, 2007, 40:1401.
[18] Lahitte J F, Plentz-Meneghetti S, Peruch F, Isel F, Muller R, Lutz P J. Polymer, 2006, 47:1063.
[19] Gall B T, McCahill J, Stephan D W, Mülhaupt R. Macromol. Rapid Commun., 2008, 29:1549.
[20] Ohtaki H, Deplace F, Vo G D, LaPointe A M, Shimizu F, Sugano T, Kramer E J, Fredrickson G H, Coates G W. Macromolecules, 2015, 48:7489.
[21] Arriola D J, Carnahan E M, Hustad P D, Kuhlman R L, Wenzel T T. Science, 2006, 312:714.
[22] Ciolino A E, Barrera Galland G, Luján Ferreira M, Villar M A. J. Polym. Sci. Part A:Polym. Chem., 2004, 42:2462.
[23] 张勇杰(Zhang Y J), 李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014, 26:110.
[24] Hong S C, Jia S, Teodorescu M, Kowalewski T, Matyjaszewski K, Gottfried A C, Brookhart M. J. Polym. Sci. Part A:Polym. Chem., 2002, 40:2736.
[25] Kaneyoshi H, Matyjaszewski K. J. Appl. Polym. Sci., 2007, 105:3.
[26] Kaneko H, Kojoh S-i, Kawahara N, Matsuo S, Matsugi T, Kashiwa N. J. Polym. Sci. Part A:Polym. Chem., 2005, 43:5103.
[27] Huang H, Niu H, Dong J Y. J. Polym. Sci. Part A:Polym. Chem., 2011, 49:2734.
[28] Chung T C, Jiang G J. Macromolecules, 1992, 25:4816.
[29] Chung T C, Rhubright D, Jiang G J. Macromolecules, 1993, 26:3467.
[30] Chung T C, Janvikul W, Bernard R, Jiang G J. Macromolecules, 1994, 27:26.
[31] Niu H, Dong J Y. Polym. Int., 2015, 64:1023.
[32] Chung T C, Lu H L, Ding R D. Macromolecules, 1997, 30:1272.
[33] Lu H L, Hong S, Chung T C. J. Polym. Sci. Part A:Polym. Chem., 1999, 37:2795.
[34] Lu H L, Chung T C. J. Polym. Sci. Part A:Polym. Chem., 1999, 37:4176.
[35] Caporaso L, Iudici N, Oliva L. Macromolecules, 2005, 38:4894.
[36] Caporaso L, Iudici N, Oliva L. Macromol. Sym., 2006, 234:42.
[37] Wang L, Wan D, Zhang Z, Liu F, Xing H, Wang Y, Tang T. Macromolecules, 2011, 44:4167.
[38] Li J, Li H, Wu C, Ke Y, Wang D, Li Q, Zhang L, Hu Y. Eur. Polym. J., 2009, 45:2619.
[39] Hwu J M, Chang M J, Lin J C, Cheng H Y, Jiang G J. J. Organomet. Chem., 2005, 690:6300.
[40] Mohajery S, Rahmani S, Entezami A A. Polym. Adv. Technol., 2008, 19:1528.
[41] Dong J Y, Hong H, Chung T C, Wang H C, Datta S. Macromolecules, 2003, 36:6000.
[42] Cao C, Zou J, Dong J Y, Hu Y, Chung T C. J. Polym. Sci. Part A:Polym. Chem., 2005, 43:429.
[43] Cao C, Dong J Y, Hu Y. Chin. Sci. Bull., 2005, 50:1048.
[44] Wang H Y, Guo C Y, Dong J Y. Catal. Commun., 2008, 10:61.
[45] Chung T C, Dong J Y. J. Am. Chem. Soc., 2001, 123:4871.
[46] Inoue Y, Matsugi T, Kashiwa N, Matyjaszewski K. Macromolecules, 2004, 37:3651.
[47] Kawahara N, Saito J, Matsuo S, Kaneko H, Matsugi T, Kashiwa N. Polym. Bull., 2010, 64:657.
[48] Wang L, Yang H, Tan H, Yao K, Gong J, Wan D, Qiu J, Tang T. Polymer, 2013, 54:3641.
[49] Zhang G, Wang Y, Xing H, Qiu J, Gong J, Yao K, Tan H, Jiang Z, Tang T. RSC Adv., 2015, 5:27181.
[50] Zhao Y, Gao H, Liang G, Zhu F, Wu Q. Polym. Chem., 2014, 5:962.
[51] Kashiwa N, Matsugi T, Kojoh S-i, Kaneko H, Kawahara N, Matsuo S, Nobori T, Imuta J I. J. Polym. Sci. Part A:Polym. Chem., 2003, 41:3657.
[52] Mu J, Yang F, Li W, Gong D, Liu Z, Jiang F, Chen Z. J. Polym. Sci. Part A:Polym. Chem., 2014, 52:2146.
[53] Hong M, Pan L, Li B X, Li Y S. Polymer, 2010, 51:3636.
[54] Wang X Y, Li Y G, Mu H L, Pan L, Li Y S. Polym. Chem., 2015, 6:1150.
[55] Garcia F G, Pinto McR, Soares B G. Eur. Polym. J., 2002, 38:759.
[56] Wu H, Jiang T, Zhu J, Cui K, Zhao Q, Ma Z. J. Polym. Sci. Part A:Polym. Chem., 2016, 54:516.
[57] Kaneko H, Saito J, Kawahara N, Matsuo S, Matsugi T, Kashiwa N. Polymer, 2008, 49:4576.
[58] Shin J, Chang A Y, Brownell L V, Racoma I O, Ozawa C H, Chung H Y, Peng S, Bae C. J. Polym. Sci. Part A:Polym. Chem., 2008, 46:3533.
[59] Stehling U M, Malmström E E, Waymouth R M, Hawker C J. Macromolecules, 1998, 31:4396.
[60] Bowden N B, Dankova M, Wiyatno W, Hawker C J, Waymouth R M. Macromolecules, 2002, 35:9246.
[61] Baumert M, Heinemann J, Thomann R, Mülhaupt R. Macromol. Rapid Commun., 2000, 21:271.
[62] Schneider Y, Azoulay J D, Coffin R C, Bazan G C. J. Am. Chem. Soc.,2008, 130:10464.
[63] Schneider Y, Lynd N A, Kramer E J, Bazan G C. Macromolecules, 2009, 42:8763.
[64] Coffin R C, Schneider Y, Kramer E J, Bazan G C. J. Am. Chem. Soc., 2010, 132:13869.
[65] Diallo A K, Michel X, Fouquay S, Michaud G, Simon F, Brusson J M, Carpentier J F, Guillaume S M. Macromolecules, 2015, 48:7453.
[66] Schulz M D, Wagener K B. Macromol. Chem. Phys., 2014, 215:1936.
[67] Jellema E, Jongerius A L, Reek J N H, de Bruin B. Chem. Soc. Rev., 2010, 39:1706.
[68] So L C, Faucher S, Zhu S. Prog. Polym. Sci., 2014, 39:1196.
[69] Xu Y, Thurber C M, Lodge T P, Hillmyer M A. Macromolecules, 2012, 45:9604.
[70] Savoji M T, Xu Y, Thurber C M, Lodge T P, Hillmyer M A. Macromolecules, 2016, 49:432.
[71] Xu G, Wang D, Buchmeiser M R. Macromol. Rapid Commun., 2012, 33:75.
[72] Park E S. J. Appl. Polym. Sci., 2008, 109:3631.
[73] Ciftci M, Batat P, Demirel A L, Xu G, Buchmeiser M, Yagci Y. Macromolecules, 2013, 46:6395.
[74] Ciftci M, Kork S, Xu G, Buchmeiser M R, Yagci Y. Macromolecules, 2015, 48:1658.
[75] Markova D, Opper K L, Wagner M, Klapper M, Wagener K B, Mullen K. Polym. Chem., 2013, 4:1351.
[76] Moad G. Prog. Polym. Sci., 1999, 24:81.
[77] Robin J J, Boyer C, Boutevin B, Loubat C. Polymer, 2008, 49:4519.
[78] Lv Y, Ma Z, Hu Y, Xu G X, Chung T C. Chin. Sci. Bull., 2003, 48:523.
[79] Mohajery S, Moghadam P N, Rahmani S, Entezami A A. Polym. Adv. Technol., 2010, 21:65.
[80] Kim H K, Zhang M, Yuan X, Lvov S N, Chung T C. Macromolecules, 2012, 45:2460.
[81] Balci M, Alli A, Hazer B, Guven O, Cavicchi K, Cakmak M. Polym. Bull., 2010, 64:691.
[82] Kawahara N, Saito J, Matsuo S, Kaneko H, Matsugi T, Kojoh S-i, Kashiwa N. Polym. Bull., 2007, 59:177.
[83] Wang X., Long Y, Wang Y, Li Y. J. Polym. Sci. Part A:Polym. Chem., 2014, 52:3421.
[84] Wang X, Wang Y, Shi X, Liu J, Chen C, Li Y. Macromolecules, 2014, 47:552
[85] Ciolino A E, Pieroni O I, Vuano B M, Villar M A, Vallés E M. J. Polym. Sci. Part A:Polym. Chem., 2004, 42:2920.
[1] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[2] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.